krd-lada.ru

Свойства живых организмов. Усложнение живых существ Рост и развитие - свойства живых организмов

Принцип роста энтропии требует разрушения структур. Однако разрушаться можно путем усложнения. Именно по этому пути движется глобальный эволюционный процесс. При этом природа никогда не стремится достичь полного хаоса на данном уровне системной иерархии. Так если в простейших неживых системах тенденция к возникновению хаоса реализуется обычно в стремлении вещества к рассеянию (например растворение сахара в воде), то уже в случае сложных органических соединений больший хаос (рассеяние энергии) может быть достигнут именно при концентрации вещества, например, капли масла, рассеянные в воде, стремятся слиться в одну большую каплю. Дело в том, что молекулы воды «окутывают» молекулу углеводорода своеобразной упорядоченной оболочкой. Поэтому чем больше поверхность масла, тем более упорядочиваются молекулы воды, чего природа допустить не может. Поэтому в хаосе движения капель они обязательно примут состояние с наименьшей поверхностью, то есть сольются в одну большую каплю, что послужило в свое время началом одноклеточной жизни.

В биосистемах стремление к хаосу реализуется в еще более сложных механизмах, например в процессе деления клеток. Производство энтропии за счет протекания внутриклеточных процессов пропорционально объему клетки V, а отток энтропии из клетки пропорционален площади ее поверхности S. Если клетка имеет форму шара, то V =4pr 3 /3, S = 4r 2 . Прирост энтропии в клетке S = A4pr 3 /3 - B4r 2 . При малых радиусах прирост энтропии S < 0. С ростом клетки ее радиус увеличивается, пока не достигнет некоторого критического значения при r = 3B/A, характеризующегося S = 0. В случае дальнейшего роста энтропия в клетке будет расти S > 0. Чтобы не допустить этого, она должна разделиться, иначе она погибнет от голода, перегрева и отравления своими же отходами.

Существуют и другие механизмы, решающие данную проблему. Клетка может увеличить площадь своей поверхности, например, приобрести форму эллипсоида, цилиндра (палочки) или нити, образовать корнеподобные выросты, ложноножки и т.п. Многоклеточные организмы решают подобную проблему аналогичным образом. У растений увеличивается поверхность листьев и корней. У животных в отличие от растений подобное увеличение поверхности упрятано обычно внутрь организма, чтобы не мешать движению. Нечто аналогичное происходит и в рамках таких сверхорганизмов, как экосистемы. Здесь дифференциация достигается путем увеличения экологических ниш и разнообразия видов , удлинением и усложнением пищевых цепей, совершенствованием внутривидовых и межвидовых отношений и т.п.

Таким образом жизнь научилась использовать разрушение во благо, поэтому разрушение не обязательно сопровождается гибелью биосистем. «Умеренное разрушение», на которое накладываются определенные запрограммированные ранее ограничения, приводят к расширению и усложнению жизни. Наиболее характерно в этом отношении деление клетки. Здесь смерть и рождение слились в одном процессе. Очень ярко об этом свойстве жизни выразился Ричард Бах: «Там, где глупец видит смерть гусеницы, мудрец видит рождение бабочки».



Контрольные вопросы

  1. В чем отличие между естественными и гуманитарными науками?
  2. В чем отличие между естественным и религиозным методами познания?
  3. Какова роль философии в мире науки?
  4. Какова роль математики в мире науки?
  5. Чем определяется структура естественнонаучных знаний?
  6. Перечислите основные периоды развития естествознания?
  7. В чем состоит принцип научного детерминизма?
  8. В чем суть научного метода познания реальности?
  9. В чем причина сложности понимания феноменов жизни, сознания и т.п.?
  10. В чем суть механистического подхода к пониманию мира?
  11. Какой подход к пониманию мира развивается в настоящее время?
  12. Что представляет собой и какими свойствами обладают пространство и время с позиций Ньютона?
  13. Сформулируйте принцип инерции Галилея.
  14. Сформулируйте принцип относительности Галилея.
  15. Сформулируйте три закона Ньютона?
  16. В чем суть концепций дальнодействия и близкодействия?
  17. Что такое поле?
  18. Какие законы сохранения Вы знаете?
  19. В чем отличие между холистским и редукционистским подходом к пониманию явлений?
  20. Кто создал, и кто подтвердил гелиоцентрическую концепцию.
  21. Как была подтверждена атомарная теория вещества?
  22. Как выглядит модель атома Резерфорда?
  23. Что называется энтропией?
  24. Сформулируйте второй закон термодинамики?
  25. В чем состоит парадокс жизни с точки зрения Больцмана
  26. В чем состоит парадокс, связанный с уравнениями Максвелла?
  27. Что такое эфир и существует ли он?
  28. Сформулируйте постулаты специальной теории относительности Эйнштейна?
  29. Как меняется время, длина и масса тела, летящего с субсветовой скоростью?
  30. В чем суть общей теории относительности Эйнштейна?
  31. В чем состоит парадокс бесконечной Вселенной?
  32. Каковы выводы из работ Фридмана?
  33. В чем состоит концепция Большого взрыва?
  34. Чем отличаются звезды первого и второго поколений?
  35. Когда и как создавались тяжелые вещества?
  36. В чем суть квантовой концепции Планка?
  37. В чем суть корпускулярно-волнового дуализма?
  38. Сформулируйте принцип дополнительности Бора.
  39. В чем суть соотношения неопределенностей Гейзенберга?
  40. Что такое Лапласовский детерминизм? Почему Лаплас был не прав?
  41. Можно ли познать мир с абсолютной точностью?
  42. Что входит в состав радиоактивных лучей?
  43. Что такое протон и нейтрон?
  44. Что такое сильное взаимодействие?
  45. В чем суть ядерных реакций?
  46. Что такое цепная реакция?
  47. Что такое ядерный синтез?
  48. Что такое энергия связи?
  49. Какие виды фундаментальных взаимодействий Вы знаете?
  50. Что такое античастица?
  51. Как можно породить частицы из вакуума?
  52. В чем суть обменной теории взаимодействий?
  53. Из чего состоит протон?
  54. Чему равна суммарная энергия Вселенной?
  55. Сформулируйте принцип Маха.
  56. В чем суть принципа оптимальности?
  57. В чем суть вариационных принципов?
  58. В чем суть антропного принципа?
  59. Как проявляется конвергенция в строении живых существ?
  60. Что такое анализ и синтез в работе мыслительного аппарата человека?
  61. В чем отличие модели от оригинала?
  62. В чем суть множественной картины мира?
  63. Перечислите принципы механистического подхода.
  64. В чем особенность сложных систем?
  65. Какова основа системности мира?
  66. Сформулируйте закон подобия части и целого?
  67. Сформулируйте биогенетический закон?
  68. Сформулируйте системогенетический закон?
  69. Почему нельзя познать природу, оставаясь только на позициях редукционизма?
  70. В чем суть системного свойства иерархичности?
  71. Перечислите принципы системного подхода?
  72. Сформулируйте принцип соответствия.
  73. Что называется гармонией?
  74. Что такое живой организм?
  75. В чем смысл жизни?
  76. Перечислите модели возникновения жизни на Земле.
  77. Как подтвердить земное происхождение жизни?
  78. Какие законы лежат в основе созидания и разрушения во Вселенной?
  79. Сформулируйте принцип минимума диссипации энергии.
  80. Можно ли создать абсолютно безотходное производство?
  81. Какими особенностями обладают самоорганизующиеся системы?
  82. Как реализуется принцип подобия части и целого в самоорганизующихся системах?
  83. Какие источники энергии использует жизнь?
  84. Как строится иерархия живых существ?
  85. В чем суть механики агрегации (социализации)?
  86. Что такое филогенетическое дерево?
  87. От кого произошел человек?
  88. Что такое биосфера?
  89. Что такое ноосфера?
  90. Когда на Земле возникла жизнь?
  91. Что является на Земле главной геологообразующей силой?
  92. Перечислите основные положения теории Вернадского.
  93. Является ли жизнь на Земле случайностью или закономерностью?
  94. Перечислите основные свойства биосферы.
  95. Возможен ли круговорот энергии?
  96. Что такое трофическая цепь?
  97. Что такое качество энергии?
  98. В чем особенность энергетики человека?
  99. Что такое генетический код?

Живые системы имеют общие признаки:
1. Единство химического состава свидетельствует о единстве и связи живой и неживой материи.

Пример:

В состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но в других количественных соотношениях (т.е. живые организмы обладают способностью избирательного накопления и поглощения элементов). Более 90 % химического состава приходится на четыре элемента: С, O, N, H, которые участвуют в образовании сложных органических молекул (белков, нуклеиновых кислот, углеводов, липидов).

2. Клеточное строение (Единство структурной организации). Все существующие на Земле организмы состоят из клеток. Вне клетки жизни нет.
3. Обмен веществ (Открытость живых систем) . Все живые организмы представляют собой "открытые системы".

Открытость системы - свойство всех живых систем связанное с постоянным поступлением энергии извне и удалении продуктов жизнедеятельности (организм жив, пока в нем происходит обмен веществами и энергией с окружающей средой).

Обмен веществ - совокупность биохимических превращений, происходящих в организме и других биосистемах.

Обмен веществ состоит из двух взаимосвязанных процессов: синтеза органических веществ (ассимиляции) в организме (за счет внешних источников энергии – света и пищи) и процесса распада сложных органических веществ (диссимиляции) с выделением энергии, которая затем расходуется организмом. Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.
4. Самовоспроизведение (Репродукция) - способность живых систем воспроизводить себе подобных. Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В её основе лежит процесс удвоения молекул ДНК с последующим делением клеток.
5. Саморегуляция (Гомеостаз) - поддержание постоянства внутренней среды организма в непрерывно меняющихся условиях окружающей среды. Любой живой организм обеспечивает поддержание гомеостаза (постоянства внутренней среды организма). Стойкое нарушение гомеостаза ведет к гибели организма.
6. Развитие и рост . Развитие живого представлено индивидуальным развитием организма (онтогенезом) и историческим развитием живой природы (филогенезом).

  • В процессе индивидуального развития постепенно и последовательно проявляются индивидуальные свойства организма и осуществляется его рост (все живые организмы растут в течение своей жизни).
  • Результатом исторического развития является общее прогрессивное усложнение жизни и все многообразие живых организмов на Земле. под развитием понимают как индивидуальное развитие, так и историческое развитие.

7. Раздражимость - способность организма избирательно реагировать на внешние и внутренние раздражители (рефлексы у животных; тропизмы, таксисы и настии у растений).
8. Наследственность и изменчивость представляют собой факторы эволюции, так как благодаря им возникает материал для отбора.

  • Изменчивость - способность организмов приобретать новые признаки и свойства в результате влияния внешней среды и/или изменений наследственного аппарата (молекул ДНК).
  • Наследственность - способность организма передавать свои признаки последующим поколениям.

9. Способность к адаптациям - в процессе исторического развития и под действием естественного отбора организмы приобретают приспособления к условиям окружающей среды (адаптации). Организмы, не обладающие необходимыми приспособлениями, вымирают.
10. Целостность (непрерывность) и дискретность (прерывность) . Жизнь целостна и в то же время дискретна. Эта закономерность присуща как структуре, так и функции.

Любой организм представляет собой целостную систему, которая, в то же время, состоит из дискретных единиц - клеточных структур, клеток, тканей, органов, систем органов. Органический мир целостен, поскольку все организмы и происходящие в нем процессы взаимосвязаны. В то же время он дискретен, так как складывается из отдельных организмов.

Отдельные свойства, перечисленные выше, могут быть присущи и неживой природе.

Пример:

Для живых организмов характерен рост, но ведь и кристаллы растут! Хотя этот рост не имеет тех качественных и количественных параметров, которые присущи росту живого.

Пример:

Для горящей свечи характерны процессы обмена и превращения энергии, но она не способна к саморегуляции и самовоспроизведению.

Выделение общих свойств живых организмов позволят однозначно отличать живое от неживого. Точного определения, что такое жизнь или живой организм, нет, поэтому живое идентифицируют по комплексу его свойств, или признаков.

В отличие от тел неживой природы, живые организмы отличаются сложностью строения и функциональности. Но если рассматривать каждое свойство отдельно, то некоторые из них в той или иной форме можно наблюдать в неживой природе. Например, расти могут и кристаллы. Поэтому так важна совокупность свойств живых организмов.

На первый взгляд наблюдаемое многообразие организмов создает трудности для выявления их общих свойств и признаков. Однако по мере исторического развития биологических наук становились очевидными многие общие закономерности жизни, наблюдаемые у совершенно разных групп организмов.

Кроме ниже перечисленных свойств живого, также часто выделяют единство химического состава (схожесть у всех организмов и отличие соотношений элементов между живым и неживым), дискретность (организмы состоят из клеток, виды из отдельных особей и т. п.), участие в процессе эволюции, взаимодействие организмов между собой, подвижность, ритмичность и др.

Однозначного перечня признаков живого нет, отчасти это вопрос философский. Нередко, выделяя одно свойство, второе становится его следствием. Есть признаки живого, состоящие из ряда других. Кроме того, свойства живого тесно взаимосвязаны между собой, и эта взаимозависимость в совокупности дает такое уникальное явление природы как жизнь.

Обмен веществ – основное свойство живого

Все живые организмы осуществляют обмен веществ с окружающей средой: определенные вещества поступают в организм из среды, другие - выделяются в среду из организма. Это характеризует организм как открытую систему (также поток через систему энергии и информации). Наличие избирательного обмена веществ свидетельствует о том, что организм жив.

Обмен веществ в самом организме включает два противоположных, но взаимосвязанных и сбалансированных процесса - ассимиляцию (анаболизм) и диссимиляцию (катаболизм) . Каждый из них состоит из многочисленных химических реакций, объединенных и упорядоченных в циклы и цепи превращения одних веществ в другие.

В результате ассимиляции образуются и обновляются структуры организма за счет синтеза необходимых сложных органических веществ из более простых органических, а также неорганических веществ. В результате диссимиляции происходит расщепление органических веществ, при этом образуются необходимые организму для ассимиляции более простые вещества, а также в молекулах АТФ запасается энергия.

Обмен веществ требует притока веществ извне, а ряд продуктов диссимиляции не находят применения в организме и должны из него удаляться.

Все живые организмы так или иначе питаются . Пища служит источником необходимых веществ и энергии. Растения питаются за счет процесса фотосинтеза. Животные и грибы поглощают органические вещества других организмов, после чего расщепляют их на более простые компоненты, из которых синтезируют свои вещества.

Для живых организмов свойственно выделение ряда веществ (у животных это в основном продукты расщепления белков - азотистые соединения), представляющих собой конечные продукты обмена веществ.

Пример ассимиляционного процесса - это синтез белка из аминокислот. Пример диссимиляции - окисление органического вещества при участии кислорода, в результате чего образуются углекислый газ (CO 2) и вода, которые выводятся из организма (вода может использоваться).

Энергозависимость живого

Для осуществления процессов жизнедеятельности организмам необходим приток энергии. В гетеротрофные организмы она поступает вместе с пищей, то есть обмен веществ и поток энергии у них связаны. При расщеплении питательных веществ энергия высвобождается, запасается в других веществах, часть рассеивается в виде тепла.

Растения являются автотрофами и получают первоначальную энергию от Солнца (они улавливают его излучение). Эта энергия идет на синтез первичных органических веществ (в коих она и запасается) из неорганических. Это не значит, что в растениях не протекают химические реакции распада (диссимиляции) органических веществ для получения энергии. Однако растения не получают извне органику посредством питания. Она у них полностью «своя».

Энергия идет на поддержку упорядоченности, структурированности живых организмов, что важно для протекания многочисленных химических реакций в них. Противостояние энтропии - важное свойство живого.

Дыхание - это характерный для живых организмов процесс, в результате которого происходит расщепление высокоэнергетических соединений. Высвобождаемая при этом энергия запасается в АТФ.

В неживой природе (когда процессы пущены на самотек) структурированность систем рано или поздно утрачивается. При этом устанавливается то или иное равновесие (например, горячее тело отдает тепло другим, температура тел выравнивается). Чем меньше упорядоченность, тем больше энтропия. Если система закрыта и в ней протекают процессы, которые не уравновешивают друг друга, то энтропия увеличивается (второй закон термодинамики). Живые организмы обладают свойством уменьшать энтропию путем поддержания внутренней структуры за счет притока энергии из вне.

Наследственность и изменчивость как свойство живого

В основе самообновления структур живых организмов, а также размножения (самовоспроизведения) организмов лежит наследственность, которая связана с особенностями молекул ДНК. При этом в ДНК могут появляться изменения, которые приводят к изменчивости организмов и обеспечивают возможность процесса эволюции. Таким образом, живые организмы обладают генетической (биологической) информацией, что также можно обозначить как основной и исключительный признак живого.

Несмотря на способность к самообновлению, она у организмов не вечна. Продолжительность жизни особи ограничена. Однако живое остается бессмертным благодаря процессу размножения , которое может быть как половым, так и бесполым. При этом происходит наследование признаков родителей путем передачи ими потомкам своей ДНК.

Биологическая информация записана с помощью особого генетического кода, который универсален для всех организмов на Земле, что может говорить о единстве происхождения живого.

Генетический код хранится и реализуется в биологических полимерах: ДНК, РНК, белках. Такие сложные молекулы также являются особенностью живого.

Информация, хранимая в ДНК, при переносе на белки выражается для живых организмов в таких их свойствах как генотип и фенотип. Все организмы обладают ими.

Рост и развитие - свойства живых организмов

Рост и развитие - это свойства живых организмов, реализуемые в процессе их онтогенеза (индивидуального развития). Рост - это увеличение размеров и массы тела с сохранением общего плана строения. В процессе развития организм меняется, он приобретает новые признаки и функциональность, другие - могут быть утеряны. То есть в результате развития возникает новое качественное состояние. У живых организмов обычно рост сопровождается развитием (или развитие ростом). Развитие направлено и необратимо.

Кроме индивидуального развития выделяют историческое развитие жизни на Земле, которое сопровождается образованием новых видов и усложнением жизненных форм.

Хотя рост можно наблюдать и в неживой природе (например, у кристаллов или пещерных сталагмитов), его механизм у живых организмов иной. В неживой природе рост осуществляется за счет простого присоединения вещества к наружной поверхности. Живые организмы растут за счет питательных веществ, поступающих внутрь. При этом у них увеличиваются не столько сами клетки, сколько возрастает их количество.

Раздражимость и саморегуляция

Живые организмы обладают свойством в определенных пределах изменять свое состояние в зависимости от условий как внешней, так и внутренней среды. В процессе эволюции у видов выработались различные способы регистрации параметров среды (среди прочего посредством органов чувств) и ответной реакции на разные раздражители.

Раздражимость живых организмов избирательна, то есть они реагируют только на то, что важно для сохранения их жизни.

Раздражимость лежит в основе саморегуляции организма, которая, в свою очередь, имеет приспособительное значение. Так при повышении температуры тела у млекопитающих расширяются кровеносные сосуды, отдавая в окружающую среду тепло в большем количестве. В результате температура животного нормализуется.

У высших животных многие реакции на внешние раздражители зависят от достаточно сложного поведения.

Загрузка...