krd-lada.ru

Растением с мендель проводил опыты. Эксперименты менделя

Педагог ДО

МОУ ДО «Центр детского творчества»

Практическое пособие «Удивительные опыты с растениями»

Надым: МОУ ДО «Центр детского творчества», 2014 г.,30с.

Редакционный совет:

Заместитель директора по учебно-воспитательной работе МОУ ДОД

« Центр детского творчества»

Председатель экспертной комиссии, учитель химии высшей квалификационной категории МОУ «Средняя общеобразовательная школа №9 г. Надыма»

Учитель биологии высшей квалификационной категории МОУ «Средняя общеобразовательная школа №9 г. Надыма»

В практическом пособии представлены опыты с растениями, которые могут быть использованы на занятиях с учащимися младшего и среднего школьного возраста для познания окружающего мира.

Данное практическое пособие может быть использовано педагогами дополнительного образования, учителями начальных классов , обучающимися и их родителями при изучении растительного мира на уроках и во внеурочное время

Введение………………………………………………………..................4

1. Опыты по выявлению условий произрастания растений:..........7

1. 1. Влияние света на рост и развитие растений.

1. 2. Влияние температуры на рост и развитие растений.

Методика проведения: взять два одинаковых черенка комнатных растений, поместить их в воду. Один поставить в шкаф, другой оставить на свету. Через 7-10 дней сравнить черенки (обратить внимание на интенсивность окраски листьев и наличие корней); сделать вывод.

Опыт №2:

Оборудование: два растения колеуса.

Методика проведения: поместить одно растение колеуса в темный угол класса, а другое - на освещенное солнцем окно. Через 1,5 – 2 недели сравнить интенсивность окраски листьев; сделать вывод о влиянии света на окраску листьев.

Почему? Для того чтобы в растении произошла реакция фотосинтеза им нужен солнечный свет. Хлорофилл - зеленый пигмент, необходимый для фотосинтеза. Когда нет солнца запас молекул хлорофилла истощается и не пополняется. Из-за этого растение бледнеет и рано или поздно умирает.

Влияние световой направленности на рост и развитие растений.

Цель: изучить фототропизм растений.

Оборудование: домашнее растение (колеус, бальзамин).

Методика проведения: поставить растение у окна на три дня. Развернуть растение на 180 градусов и оставить еще на три.

Выводы: листья растения поворачиваются к окну. Развернувшись, растение меняет направление листьев, но через три дня они снова поворачиваются к свету.

Почему? Растения содержат вещество под названием ауксин, которое способствует удлинению клеток. Накопление ауксина происходит на темной стороне стебля. Излишки ауксина заставляют находящиеся на темной стороне клетки вырастать длиннее, из-за чего стебли растут по направлению к свету, этот процесс называется фототропизмом. Фото – значит свет, а тропизм – движение.

1.2. Влияние температуры на рост и развитие растений

Аквазащита растений от низких температур.

Цель: показать, как вода защищает растения от низких температур.

Оборудование: два термометра, алюминиевая фольга, бумажные салфетки, два блюдца, холодильник.

Методика проведения: свернуть фольгу в форме пенала для термометра. Вложить каждый термометр в такой пенал, чтобы его конец оставался снаружи. Завернуть каждый пенал в бумажную салфетку. Один из обернутых пеналов намочить водой. Следить за тем, чтобы вода не попала внутрь пенала. Положить термометры на блюдца и поставить их в морозилку. Через две минуты сравнить показания термометров. Следить за показаниями термометров каждые две минуты в течение десяти минут.

Выводы: термометр, находящийся в пенале обернутой мокрой салфеткой, показывает более высокую температуру.

Почему? Замерзание воды в мокрой салфетке называется фазовым превращением, при этом изменяется и тепловая энергия , из-за чего тепло либо выделяется, либо поглощается. Как видно из показаний термометров, выделяемое тепло нагревает окружающее пространство. Таким образом, растение можно защитить от низкой температуры, поливая их водой. Однако этот метод не пригоден, когда заморозки продолжаются достаточно долго или когда температура опускается ниже точки замерзания воды.

Влияние температуры на сроки прорастания семян.

Цель: показать, как влияет температура на прорастание семян.

Оборудование: семена теплолюбивых культур (фасоль, томат, подсолнечник) и не требовательных к теплу (горох, пшеница, рожь, овес); 6-8 прозрачных пластиковых коробочек с крышками, стеклянных банок или чашек Петри – растилен; марля или фильтровальная бумага, газетная бумага для изготовления крышек к стеклянным банкам, нитки или резиновые кольца, термометр.

Методика проведения: по 10-20 семян какого-либо теплолюбивого вида растений, например томатов, помещают в 3-4 растильни на влажную марлю или фильтровальную бумагу. В другие 3-4 растильни помещают по 10-20 семян

не требовательных к теплу растений, например гороха. Количество воды в растильнях для одного растения должно быть одинаковым. Вода не должна полностью покрывать семена. Растильни закрывают крышками (для банок крышки делают из двух слоев газетной бумаги). Проращивание семян проводят при различных температурах: 25-30°С, 18-20°С (в термостате или в комнатной тепличке, у батареи или печки),10-12°С (между рамами, вне помещения), 2-6°С (в холодильнике, погребе). Через 3-4 дня сравниваем полученные результаты. Делаем вывод.

Влияние низкой температуры на развитие растений.

Цель: выявить потребность комнатных растений в тепле.

Оборудование: листок комнатного растения.

Методика проведения: вынести листок комнатного растения на мороз. Сравнить этот листок с листьями данного растения. Сделать вывод.

Влияние изменения температуры на рост и развитие растений.

Цель:

Оборудование: два пластиковых стакана с водой, две веточки ивы.

Методика проведения: две ветки ивы поставить в банки с водой: одну – на освещаемое солнцем окно, другую – между рамами окна. Каждые 2-3 дня сравнивать растения, затем сделать вывод.

Влияние температуры на скорость развития растений.

Цель: выявить потребность растений в тепле.

Оборудование: два любых одинаковых комнатных растения.

Методика проведения: выращивание одинаковых растений в классе на теплом южном окне и на холодном северном. Через 2-3 недели сравнить растения. Сделать вывод.

1.3. Влияние влажности на рост и развитие растений.

Изучение транспирации в растениях.

Цель: показать, как растение теряет влагу через испарение.

Оборудование: растение в горшочке, полиэтиленовый пакет, клейкая лента.

Методика проведения: наденьте пакет на растение и надежно прикрепите его к стеблю клейкой лентой. Поставьте растение на 2-3 часа на солнце. Посмотрите, каким стал пакет изнутри.

Выводы: на внутренней поверхности пакета видны капельки воды и кажется, будто пакет заполнен туманом.

Почему? Растение всасывает воду из почвы через корни. Вода идет по стеблям, откуда около 9/ 10 воды испаряется через устьица. Некоторые деревья испаряют до 7 тонн воды за день. На устьица оказывают влияние температура и влажность воздуха. Потеря влаги растениями через устьице называется транспирацией.

Влияние тургорного давления на развитие растений.

Цель: продемонстрировать, как вянут стебли растений из-за изменения давления воды в клетке.

Оборудование: завядший корень сельдерея, стакан, синий пищевой краситель.

Методика проведения: попросить взрослого отрезать середину стебля. Наполнить стакан водой наполовину и добавить туда красителя столько, чтобы вода потемнела. Поставить в эту воду стебель сельдерея и оставить на ночь.

Выводы: листья сельдерея приобретают голубовато – зеленоватый цвет, а стебель выпрямляется, и становится тугим и плотным.

Почему? Свежий разрез говорит нам о том, что клетки сельдерея не закрылись и не высохли. Вода попадает в ксилемы – трубки, по которым она и проходит. Эти трубки идут по всей длине стебля. Вскоре вода выходит из ксилем и попадает в другие клетки. Если стебель осторожно согнуть, обычно он затем распрямляется и возвращается в прежнее положение. Это происходит потому, что каждая клетка растения наполнена водой. Давление воды, наполняющей клетки, делает их прочными и из-за них растение нелегко согнуть. Растение вянет из-за недостатка воды. Как у наполовину сдутого шара, его клетки съеживаются из-за чего листья и стебли поникают. Давление воды в клетках растения называется тургорным давлением.

Влияние влаги на развитие семян .

Цель: выявить зависимость роста и развития растений от наличия влаги.

Опыт 1.

Оборудование: два стакана с почвой (сухой и влажной); семена фасоли, сладкого перца или других овощных культур.

Методика проведения: посеять семена в увлажненную и сухую почву. Сравнить полученный результат. Сделать вывод.

Опыт 2.

Оборудование: мелкие семена, полиэтиленовый или пластиковый мешочек, тесьма.

Методика проведения: намочить губку, поместить семена в отверстия в губке. Губку держать в мешочке. Мешочек повесить на окно и наблюдать за прорастанием семян. На основе полученных результатов сделать выводы.

Опыт 3.

Оборудование: мелкие семена травы или кресс-салата, губка.

Методика проведения: намочить губку, покатать ее по семенам травы, положить на блюдце, поливать умеренно. На основе полученных результатов сделать выводы.

1.4. Влияние состава почвы на рост и развитие растений.

Влияние рыхления почвы на рост и развитие растений.

Цель: выяснить необходимость рыхления почвы.

Оборудование: два любых комнатных растения.

Методика проведения: взять два растения, одно, растущее в рыхлой почве, другое – в твердой, полить их. В течение 2-3 недель вести наблюдения, на основе чего сделать выводы о необходимости рыхления.

Состав почвы – необходимое условие роста и развития растений.

Цель: выяснить, что для жизни растений необходим определенный состав почвы.

Оборудование: два цветочных горшка, почва, песок, два черенка комнатных растений.

Методика проведения: посадить одно растение в емкость с землей, другое - в емкость с песком. В течение 2 -3 недель вести наблюдения, на основе чего сделать выводы о зависимости роста растений от состава почвы.

2. Опыты по исследованию процессов жизнедеятельности.

2.1. Питание.

Изучение процесса саморегуляции в растениях.

Цель: показать, как растение может само обеспечивать себя питанием.

Оборудование: большая (литра на 4) широкогорлая банка с крышкой, небольшое растение в горшочке.

Методика проведения: полейте растение, поставьте горшочек с растением целиком в банку. Плотно закройте банку крышкой, поставьте ее в светлое место, где бывает солнце. Не открывайте банку в течение месяца.

Выводы: на внутренней поверхности банки регулярно появляются капельки воды, цветок продолжает расти.

Почему? Капельки воды – это испарившаяся из почвы и самого растения влага. Растения используют содержащиеся в своих клетках сахар и кислород для выработки углекислого газа, воды и энергии. Это называется реакцией дыхания. Растение использует углекислый газ, воду, хлорофилл и энергию света, чтобы вырабатывать из них сахар, кислород и энергию. Этот процесс называется фотосинтезом. Обратите внимание на то, что продукты реакции дыхания поддерживают реакцию фотосинтеза и наоборот. Так растения сами производят себе питание. Однако после того как питательные вещества в почве закончатся, растение погибнет.

Влияние питательных веществ семени на рост и развитие проростков.

Цель: показать, что рост и развитие проростков происходит за счет запасных веществ семени.

Оборудование: семена гороха или фасоли, пшеницы, ржи, овса; химические стаканы или стеклянные банки; фильтровальная бумага, газетная бумага для крышек.

Методика проведения: стакан или стеклянную банку изнутри выстилают фильтровальной бумагой. На дно наливают немного воды так, чтобы фильтровальная бумага была влажной. Между стенками стакана (банки) и фильтровальной бумагой на одном уровне располагают семена, например пшеницы. Стакан (банку) закрывают крышкой из двух слоев газетной бумаги. Проращивание семян осуществляют при температуре 20-22°С. Опыт можно проделать в нескольких вариантах: используя крупные и мелкие семена пшеницы; предварительно пророщенные семена гороха или фасоли (целое семя, с одной семядолей и с половинкой семядоли). По результатам наблюдений сделать вывод.

Влияние обильного полива на поверхностный слой почвы.

Цель: показать, как дождь действует на верхний слой почвы, вымывая из нее питательные вещества.

Оборудование: почва, красная темпера в порошке, чайная ложка, воронка, стеклянная банка, фильтровальная бумага, стакан, вода.

Методика проведения: смешать четверть чайной ложки темперы (краски) с четвертью стакана земли. Вставить в баночку воронку с фильтром (специальная химическая или промокательная бумага). Высыпать почву с краской на фильтр. Вылить на почву около четверти стакана воды. Объяснить полученный результат.

2.2. Дыхание.

Изучение процесса дыхания в листьях растений.

Цель: узнать, с какой стороны листа в растение проникает воздух.

Оборудование: цветок в горшочке, вазелин .

Методика проведения: намажьте толстый слой вазелина на поверхность четырех листочков. Намажьте толстый слой вазелина на нижнюю поверхность других четырех листочков. Ежедневно в течение недели наблюдайте за листьями.

Выводы: листья, на которых вазелин был нанесен снизу, завяли, тогда, как другие не пострадали.

Почему? Отверстия на нижней поверхности листьев – устьица – служат для попадания газов внутрь листа и выхода их наружу. Вазелин закрыл устьица, перекрыв доступ в лист необходимому для его жизнедеятельности углекислому газу, и препятствует выходу из листа излишков кислорода.

Изучение процесса движения воды в стеблях и листьях растений.

Цель: показать, что листья и стебли растений могут вести себя как соломинки.

Оборудование: стеклянная бутылочка, лист плюща на стебельке, пластилин, карандаш, соломинка, зеркало.

Методика проведения: налейте в бутылочку воды, оставив ее незаполненной на 2-3 см. Возьмите кусочек пластилина и обмажьте его вокруг стебля ближе к листу. Вставьте в горлышко бутылки стебель, погрузив его кончик в воду и замазав горлышко пластилином как пробкой. Карандашом проделайте в пластилине отверстие для соломинки, вставьте в отверстие соломинку так, чтобы ее конец не доставал до воды. Закрепите соломинку в отверстии пластилином. Возьмите бутылочку в руку и встаньте перед зеркалом, чтобы видеть в нем ее отражение. Через соломинку высасывайте воздух из бутылочки. Если вы хорошо замазали горлышко пластилином, то это будет нелегко.

Выводы: из погруженного в воду конца стебля начинают выходить пузырьки воздуха.

Почему? В листе есть отверстия, называемые устьицами, от них к стеблю идут микроскопические трубочки – ксилемы. Когда вы высасывали воздух из бутылочки через соломинку, то он проникал в лист через эти отверстия – устьица и по ксилемам поступал в бутылочку. Так лист и стебель играют роль соломинки. В растениях устьица и ксилемы служат для движения воды.

Изучение процесса воздухообмена в растениях .

Цель: выяснить, с какой стороны листа в растение проникает воздух.

Оборудование: цветок в горшочке, вазелин.

Методика проведения: намазать вазелином верхнюю сторону четырех листочков комнатного растения и нижнюю поверхность других четырех листочков того же растения. В течение нескольких дней ведите наблюдения. Отверстия на нижней поверхности листьев – устьица – служат для попадания газов внутрь листа и выхода их наружу. Вазелин закрыл устьица, перекрыв доступ в лист необходимому для его жизнедеятельности воздуху.

2.3. Размножение.

Способы размножения растений.

Цель: показать разнообразие способов размножения растений.

Опыт 1.

Оборудование: три горшка с почвой, две картофелины.

Методика проведения: подержать 2 картофелины в теплом месте, пока глазки не прорастут на 2 см. Приготовить целую картофелину, половинку и часть с одним глазком. Поместить их в разные горшочки с почвой. Наблюдения вести в течение нескольких недель. По их результатам сделать вывод.

Опыт 2.

Оборудование: емкость с почвой, отросток традесканции, вода.

Методика проведения: веточку традесканции положить на поверхность цветочного горшка и присыпать почвой; регулярно увлажнять. Опыт лучше проводить весной. В течение 2 – 3 недель вести наблюдения. По результатам сделать вывод.

Опыт 3.

Оборудование: горшок с песком, верхушки морковки.

Методика проведения: во влажный песок посадить верхушки морковки срезом вниз. Поставить на свет, поливать. Провести наблюдение в течение 3 недель. По результатам сделать вывод.

Влияние силы тяжести на рост растений.

Цель: выяснить, как сила тяжести влияет на рост растений.

Оборудование: домашнее растение, несколько книг.

Методика проведения: поставьте горшок с растением на книги под углом. В течение недели наблюдайте за положением стеблей и листьев.

Выводы: стебли и листья поднимаются к верху.

Почему? В растении содержится так называемое ростовое вещество - ауксин, которое стимулирует рост растений. Благодаря силе тяжести ауксин концентрируется в нижней части стебля. Эта часть, где накопился ауксин, растет энергичнее и стебель тянется вверх.

Влияние изоляции среды на развитие растений .

Цель: пронаблюдать за ростом и развитием кактуса в закрытом сосуде, выявить влияние условий окружающей среды на процессы развития и роста.

Оборудование: круглая колба, чашка Петри. Кактус, парафин, грунт.

Методика проведения: в центр чашки Петри на увлажненный грунт поместить кактус, накрыть круглой колбой, и отметить его размеры герметично закупорив парафином. Наблюдать за ростом кактуса в закрытом сосуде, сделать вывод.

2.4. Рост и развитие.

Влияние питательных веществ на рост растения.

Цель: проследить за пробуждением деревьев после зимы, выявить необходимость питательных веществ для жизни растений (в воде веточка погибает через какое-то время).

Оборудование: сосуд с водой, ветка ивы.

Методика проведения: поместить ветку ивы (весной) в сосуд с водой. Пронаблюдать за развитием веточки ивы. Сделать вывод.

Изучение процесса прорастания семян.

Цель: показать детям, как прорастают семена и появляются первые корни.

Оборудование: семена, бумажная салфетка, вода, стакан.

Методика проведения: обернуть стакан изнутри влажной бумажной салфеткой. Между бумагой и стаканом поместить семена, на дно стакана налить воду (2см). Вести наблюдения за появлением проростков.

3. Опыты с грибами.

3.1. Изучение процесса образования плесени.

Цель: расширить знания детей о разнообразии живого мира.

Оборудование: кусочек хлеба, два блюдца, вода.

Методика проведения: положить на блюдце намоченный хлеб, подождать около часа. Накрыть хлеб вторым блюдцем. Время от времени добавлять по каплям воду. Результат лучше наблюдать в микроскоп. На хлебе появится белый пушок, который через некоторое время приобретёт черный цвет.

3 .2. Выращивание плесени.

Цель: вырастить грибок под названием хлебная плесень.

Оборудование: ломтик хлеба, пластиковый пакет, пипетка.

Методика проведения: положить хлеб в пластиковый пакет, капните в пакет 10 капель воды, закройте пакет. Положите пакет в темное место на 3-5 дней, рассмотрите хлеб через пластик. Рассмотрев хлеб, выбросите его с пакетом.

Выводы: на хлебе растет что-то черное похожее на волосы.

Почему? Плесень – вид грибка. Она очень быстро растет и распространяется. Плесень производит малюсенькие клетки с твердой оболочкой, они называются спорами. Споры гораздо меньше пыли и могут переноситься воздухом на большие расстояния. На куске хлеба уже были споры, когда мы положили его в пакет. Влага, тепло и темнота создают хорошие условия для роста плесени. Плесень имеет хорошие и плохие качества. Некоторые виды плесени портят вкус и запах пищи, но благодаря ей же некоторые продукты имеют очень приятный вкус. В отдельных видах сыров много плесени, но в то же время они очень вкусны. Зеленоватая плесень, которая растет на хлебе и апельсинах, используется для лекарства, которое называется пенициллин.

3 .3. Выращивание дрожжевых грибков.

Цель: посмотреть, какой эффект производит раствор сахара на развитие дрожжевых грибков.

Оборудование: пакетик сухих дрожжей, сахар, мерная чашка (250 мл) или столовая ложка, стеклянная бутылка (0,5 л.), воздушный шарик (25см.).

Методика проведения: смешайте дрожжи и 1 грамм сахара в чашке теплой воды. Убедитесь, что вода теплая, а не горячая. Налейте раствор в бутылку. Влейте в бутылку еще одну чашку теплой воды. Выпустите из шарика воздух и наденьте его на горлышко бутылки. Поставьте бутылку в темное сухое место на 3-4 дня. Ежедневно наблюдайте за бутылкой.

Выводы: в жидкости постоянно образуются пузырьки. Шарик частично надут.

Почему? Дрожжи – это грибки. В них нет хлорофилла, как в других растениях и они не могут сами обеспечивать себя питанием. Как и животным для поддерживания энергии дрожжам нужна другая пища, как сахар. Под влиянием дрожжей сахар превращается в спирт и углекислый газ с выделением энергии. Пузырьки, которые мы видели, являются углекислым газом. Тот же самый газ заставляет тесто в духовке подниматься. В готовом хлебе видны дырки, появляющиеся из-за выделения газа. Частично благодаря испарениям спирта от свежеиспеченного хлеба идет очень приятный запах.

4. Опыты с бактериями.

4.1. Влияние температуры на рост бактерий.

Цель: продемонстрировать эффект, который оказывает температура на рост бактерий.

Оборудование: молоко, мерная чашка (250 мл.), две по 0,5 л, холодильник.

Методика проведения: налить в каждую банку по чашке молока

Закрыть банки. Поставить одну банку в холодильник, а другую в теплое место. В течение недели ежедневно проверяйте обе банки.

Выводы: теплое молоко кисло пахнет и содержит плотные белые комки. Холодное молоко выглядит по-прежнему и пахнет вполне съедобно.

Почему? Тепло способствует развитию бактерий, которые портят пищу. Холод замедляет рост бактерий, но рано или поздно находящееся в холодильнике молоко испортится. Когда холодно, бактерии все равно растут, хотя и медленно.

5. Дополнительная информация для педагогов по постановке биологического эксперимента.

1. До февраля лучше не проводить опытные работы, в которых используются черенки комнатных растений. В период полярной ночи растения находятся в состоянии относительного покоя, и либо укоренение черенков проходит очень медленно, либо черенок погибает.

2. Для опытов с луком луковицы нужно выбирать по следующим признакам: на ощупь она должна быть твердой, наружные чешуи и шейка сухими (шуршащими).

3. В опытных работах следует использовать семена овощных культур, предварительно проверенные на всхожесть. Поскольку всхожесть семян ухудшается с каждым годом их хранения, не все посеянные семена взойдут, в результате чего опыт может не получиться.

6. Памятка о проведении экспериментов.

Ученые наблюдают явление, стараются понять и объяснить его, и для этого они проводят исследования и эксперименты. Цель этого пособия – вести вас вверх ступень за ступенью в проведении подобных опытов. Вы научитесь определять наилучший способ решения встающих перед вами задач и находить ответы на возникающие вопросы.

1. Цель эксперимента: для чего мы проводим опыт.

2. Оборудование: список всего необходимого для проведения опыта.

3. Методика проведения: поэтапные инструкции по проведению экспериментов.

4. Выводы: точное описание ожидаемого результата. Вас вдохновит результат, оправдавший ожидания, а если допустите ошибку, то ее причины обычно видны без труда, и вы сможете избежать их в следующий раз.

5. Почему? Незнакомому с научными терминами читателю доступным языком объясняются результаты опыта.

Когда вы будете проводить эксперимент, то сначала внимательно прочитайте инструкцию. Не пропускайте ни одного шага, не заменяйте требуемые материалы на другие, и вы будете вознаграждены.

Основные инструкции.

2. СОБЕРИТЕ ВСЕ НЕОБХОДИМЫЕ МАТЕРИАЛЫ. Чтобы проводимые опыты вас не разочаровали и чтобы они доставляли только удовольствие, позаботьтесь о том, чтобы у вас под рукой было все необходимое для их проведения. Когда приходится останавливаться и разыскивать то одно, то другое, это может нарушить ход эксперимента.

3. ЭКСПЕРИМЕНТ. Действуйте постепенно и очень осторожно, никогда не забегайте вперед и ничего не добавляйте от себя. Самое главное – ваша безопасность, поэтому внимательно следуйте инструкциям. Тогда вы можете быть уверены, что не произойдет ничего неожиданного.

4. НАБЛЮДАЙТЕ. Если полученные результаты не будут соответствовать описанным в пособии, внимательно прочтите инструкции и начните опыт сначала.

7. Инструкция по оформлению обучающимися дневников наблюдений/опытов/.

Для оформления дневников опытов используют обычно тетради в клетку или альбомы. Текст пишется на одной стороне тетради или альбома.

Обложка оформляется фотографией или цветной иллюстрацией по теме опыта.

ТИТУЛЬНЫЙ ЛИСТ. В верхней части страницы указывается место проведения опыта / город, ЦДТ, объединения, посередине листа «Дневник опытов /наблюдений/». Ниже, справа - научный руководитель /Ф. И.О., должность/, время начала опыта. Если дневник наблюдений одного обучающегося, его данные /Ф. И., класс/ пишутся сразу после слов «Дневник наблюдений». Если опыт ставили несколько учащихся, то список звена пишется на обратной стороне титульного листа.

2 лист. ТЕМА ОПЫТА, ЦЕЛЬ. Посередине пишется тема опыта и поставленная цель.

3 лист. БИОЛОГИЧЕСКИЕ ДАННЫЕ. Дается описание вида, сорта, над которым ведется наблюдение. Возможно, описание займет несколько листов дневника.

4 лист. МЕТОДИКА ПРОВЕДЕНИЯ ОПЫТА. Чаще всего из литературных данных, методических пособий полностью описывается методика постановки и проведения данного опыта или наблюдения.

5 лист. План ПРОВЕДЕНИЯ ОПЫТА. Исходя из методики проведения опыта, составляется план всех необходимых работ и наблюдений. Сроки ставятся приблизительные, можно по декадам.

6 лист. ХОД РАБОТЫ. Описывается календарный процесс проведения работ. Здесь же отмечаются все фенологические наблюдения в процессе проведения опыта. Подробно описывается и графически изображается схема опыта с вариантами и повторностями, с точными размерами.

7 лист. РЕЗУЛЬТАТЫ ОПЫТА. Здесь обобщается весь ход проведения опыта в виде таблиц, схем, диаграмм, графиков. Указываются конечные результаты по урожаю, измерениям, взвешиваниям и т. д.

8 лист. ВЫВОДЫ. Исходя из темы опыта, поставленной цели и результатов, делаются определенные выводы по опыту или наблюдениям.

9 лист. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ. Список представляется по алфавиту : автор, название источника, место и год издания.

8. Инструкции для оформления отчета по опытам.

1. Тема опыта.

2. Цель опыта.

3. План опыта.

4. Оборудование.

5. Ход работы (календарь наблюдений)

б) что делаю;

в) что наблюдаю.

6. Фотографии на всех стадиях работы.

7. Результаты.

8. Выводы.

Литература

1. Батурицкая Н., Фенчук Т. Практическая работа с растениями. – М., «Опыты и наблюдения», 2007

2. Бинас А.,Маш Р. Биологический эксперимент в школе. – М.,« Просвещение», 2009

3. 200 экспериментов. – М., « АСТ - ПРЕСС», 2002

4. Комиссаров В. Методика постановки опытов с плодовыми, ягодными и цветочно-декоративными растениями. – М., «Просвещение», 2004

5. Онегов А. Школа юннатов. – М., «Детская литература», 2008

6. Папорков М., Клишковская Н., Милованова Е. Учебно-опытная работа на пришкольном участке. – М., « Просвещение», 2008


Грегор Мендель. Биография Менделя. Опыты Менделя. Законы Менделя.

Грегор Ян (Иоганн) Мендель 1822–1884 гг.

Грегор Ян (Иоганн) Мендель родился 22 июля 1822 г. в чешской деревушке Нинчице в семье бедного крестьянина. Местную школу он окончил в одиннадцатилетнем возрасте, после чего поступил в Опавскую гимназию. Мендель с юности отличался выдающимися способностями к математике, интересовался жизнью природы, вел наблюдения за садовыми цветами и пчелами в отцовском саду.

В 1840 г. он поступил на философский факультет университета в Оломоуце, но семейные неурядицы и болезнь помешали Менделю закончить образование. В 1843 г. он постригся в монахи и в августианском монастыре города Брно получил новое имя – Грегор.

Сразу же после посвящения Мендель стал изучать теологию и посещать лекции по сельскому хозяйству, шелкоразведению и виноградарству. Начиная с 1848 г., он стал преподавать латинский, греческий, немецкий языки и математику в гимназии города Знойно. В 1851–1853 гг. Мендель слушал лекции по естествознанию в Венском университете. Через несколько лет он стал настоятелем монастыря и получил возможность вести свои знаменитые опыты по гибридизации гороха (1856–1863 гг.) в монастырском саду. Мендель был первым биологом, начавшим систематические исследования наследственных свойств у растений по методу гибридизации.

После семилетних экспериментов Мендель доказал, что каждая из 22 разновидностей гороха при скрещивании сохраняет свои индивидуальные свойства. При этом он точно определил свойства, по которым следует различать отдельные виды гороха.

Скрещивая различные виды и изучая их свойства, Мендель пришел к убеждению, что некоторые признаки переходят на потомство непосредственно, он назвал их преобладающими свойствами; другие же признаки, появляющиеся через одно поколение, – рецессивными, т.е. уступающими свойствами,. Одновременно он установил, что при скрещивании двух сортов новое поколение наследует характерные черты родительских форм, причем происходит это по определенным правилам.

Явления, которые наблюдал Мендель, были позднее проверены и подтверждены многочисленными ботаниками и зоологами. Важно было убедиться, что правила Менделя носят всеобщий характер. Согласно этим правилам, наследственные черты переходят на потомство не только у растений, но и у животных, не исключая человека. Теперь принято эти правила называть Первым Законом Менделя или законом сегрегации. Этот Закон гласит: "Свойства двух организмов при их скрещиваии переходят на потомство, хотя некоторые из них могут быть скрытыми. Эти свойства обязательно проявляются во втором поколении гибридов".

Врожденные математические способности позволили Менделю дать количественные определения явления наследственности и обобщить экспериментальный материал в количественном отношении. Свои многолетние наблюдения и выводы из них он доложил 8 февраля и 8 марта 1865 г. Научному природоведческому обществу в Брно, однако математические формулы, приведенные Менделем в отчете, не были понятны биологами.

В соответствии с существовавшими тогда обычаями отчет Менделя переслали в Вену, Рим, Петербург, Упсалу, Краков и в другие города, но никто не обратил на него внимания. Смесь математики с ботаникой противоречила всем бытовавшим тогда представлениям. В те времена считалось, что родительские свойства смешиваются у потомства подобно кофе с молоком.

Наука о законах наследственности была названа "менделизмом" в честь трудолюбивого исследователя жизни растений. Английский биолог Уильям Бетсон в 1906 г. назвал эту науку генетикой.

Заслуга Менделя заключается в том, что он сумел поставить перед собой точную научную задачу, выбрать превосходный растительный материал для проведения опытов и упростить метод наблюдений путем рассмотрения небольшого числа отдельных свойств, по которым исследуемые виды отличаются друг от друга, не учитывая всех других второстепенных признаков. Кроме того, будучи прекрасным математиком, Мендель выразил результаты своих опытов с помощью математических формул.

Можно утверждать, что Мендель стал основоположником новой отрасли биологии - генетики, хотя сам ничего не знал о существовании хромосом и носителей наследственных свойств, названных в 1909 г. датским исследователем Иоганнсеном генами.

Мендель был принят в члены многих научных обществ: метеорологического помологического, пчеловодческого и др.

Умер Мендель 6 января 1884 г. в городе Старое Брно. 4 – 7 августа 1965 г. в ознаменование сотой годовщины опубликования труда Менделя, положившего начало генетике, состоялся большой съезд ученых.

В качестве символической эмблемы съезда был принят рисунок, изображающий цветок гороха и модель строения частички ДНК.

Работы Г. Менделя и их значение
Честь открытия основных закономерностей наследования признаков, наблюдающихся при гибридизации, принадлежит Грегору (Иоганну) Менделю (1822–1884) – выдающемуся австрийскому естествоиспытателю, настоятелю августинского монастыря Св.Фомы в г. Брюнне (ныне г. Брно)

Главной заслугой Г. Менделя является то, что для описания характера расщепления он впервые применил количественные методы, основанные на точном подсчете большого числа потомков с контрастирующими вариантами признаков. Г. Мендель выдвинул и экспериментально обосновал гипотезу о наследственной передаче дискретных наследственных факторов. В его работах, выполнявшихся в период с 1856 по 1863 г., были раскрыты основы законов наследственности. Результаты своих наблюдений Г. Мендель изложил в брошюре «Опыты над растительными гибридами» (1865).

Мендель следующим образом формулировал задачу своего исследования. «До сих пор,– отмечал он во «Вступительных замечаниях» к своей работе,– не удалось установить всеобщего закона образования и развития гибридов… Окончательное решение этого вопроса может быть достигнуто только тогда, когда будут произведены детальные опыты в различнейших растительных семействах. Кто пересмотрит работы в этой области, тот убедится, что среди многочисленных опытов ни один не был произведен в том объеме и таким образом, чтобы можно было определить число различных форм, в которых появляются потомки гибридов, с достоверностью распределить эти формы по отдельным поколениям и установить их взаимные численные отношения».

Первое, на что Мендель обратил внимание, – это выбор объекта. Для своих исследований Мендель выбрал удобный объект – чистые линии (сорта) гороха посевного (Pisum sativum L.), различающиеся по одному или немногим признакам. Горох как модельный объект генетических исследований характеризуется следующими особенностями:

1. Это широко распространенное однолетнее растение из семейства Бобовые (Мотыльковые) с относительно коротким жизненным циклом, выращивание которого не вызывает затруднений.

2. Горох – строгий самоопылитель, что снижает вероятность заноса нежелательной посторонней пыльцы. Цветки у гороха мотылькового типа (с парусом, веслами и лодочкой); в то же время строение цветка гороха таково, что техника скрещивание растений относительно проста.

3. Существует множество сортов гороха, различающихся по одному, двум, трем и четырем наследуемым признакам.

Едва ли не самым существенным во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Мендель впервые осознал, что, только начав с самого простого случая – различия родителей по одному-единственному признаку – и постепенно усложняя задачу, можно надеяться распутать клубок фактов. Строгая математичность его мышления выявилась здесь с особенной силой. Именно такой подход к постановке опытов позволил Менделю четко планировать дальнейшее усложнение исходных данных. Он не только точно определял, к какому этапу работы следует перейти, но и математически строго предсказывал будущий результат. В этом отношении Мендель стоял выше всех современных ему биологов, изучавших явления наследственности уже в XX в.

Описание опытов Менделя .

Мендель проводил свои опыты в монастырском саду на небольшом участке площадью 35×7 м. Первоначально он выписал из различных семеноводческих ферм 34 сорта гороха. В течение двух лет Мендель высевал эти сорта на отдельных делянках и проверял, не засорены ли полученные сорта, сохраняют ли они свои признаки неизменными при размножении без скрещиваний. После такого рода проверки он отобрал для экспериментов 22 сорта.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Для этих опытов он использовал сорта гороха, различающиеся по ряду признаков:


Признаки

Альтернативные варианты признаков

Доминантные

Рецессивные

Форма зрелых семян

Круглые

Морщинистые

Окраска семядолей

Желтая

Зеленая

Окраска семенной кожуры

Серая

Белая (полупрозрачная)

Окраска цветков

Пурпурные

Белые

Форма зрелых бобов

Выпуклые

С перехватами

Окраска незрелых бобов

Зеленые

Желтые

Расположение цветков

Пазушное

Верхушечное

Высота растения

Высокие

Низкие

Наличие пергаментного слоя

Имеется

Отсутствует

Рассмотрим некоторые из опытов Менделя подробнее.
Опыт 1 . Скрещивание сортов, различающихся по окраске цветков.

Первый год . На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске цветков: пурпурноцветковый и белоцветковый. В фазе бутонизации Мендель произвёл кастрацию части цветков на пурпурноцветковых растениях: он аккуратно разрывал лодочку и удалял все 10 тычинок. Затем на кастрированный цветок надевался изолятор (трубка из пергамента), чтобы исключить случайный занос пыльцы. Через несколько дней (в фазе цветения), когда пестики кастрированных цветков становились готовыми к восприятию пыльцы, Мендель произвёл скрещивание: он снял изоляторы с кастрированных цветков пурпурноцветкового сорта и нанёс на рыльца их пестиков пыльцу с цветков белоцветкового сорта; после этого на опыленные цветки вновь надевались изоляторы. После завязывания плодов изоляторы снимались. После созревания семян Мендель собрал их с каждого искусственно опыленного растения в отдельную тару.

Второй год . На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. На всех этих растениях образовались пурпурные цветки, несмотря на то, что материнские растения были опылены пыльцой с белоцветкового сорта. Мендель предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания семян Мендель вновь собрал их с каждого растения в отдельную тару.

Третий год . На третий год Мендель вырастил из собранных семян гибридов второго поколения. Часть этих растений дала только пурпурные цветки, а часть только белые, причем пурпурноцветковых растений оказалось примерно в 3 раза больше, чем белоцветковых.
Опыт 2 . Скрещивание сортов, различающихся по окраске семядолей.

Особенность этого опыта в том, что окраска горошин (при полупрозрачной семенной кожуре) определяется окраска семядолей, а семядоли являются частью зародыша – нового растения, сформировавшегося под защитой материнского растения.

Первый год . На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске семядолей: желтосемяный и зеленосемянный. Мендель произвёл кастрацию части цветков на растениях, выращенных из желтых семян, с последующей изоляцией кастрированных цветков. В фазе цветения Мендель произвел скрещивание: на рыльца пестиков кастрированных цветков он нанес пыльцу с цветков растений, выращенных из зеленых семян. Искусственно опыленные цветки дали плоды только с желтыми семенами, несмотря на то, что материнские растения были опылены пыльцой с зеленосемянного сорта (еще раз подчеркнем, что окраска этих семян определялась окраской семядолей зародышей, которые уже являются гибридами первого поколения). Полученные семена Мендель также собрал с каждого искусственно опыленного растения в отдельную тару.

Второй год . На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. Как и в предыдущем опыте, он предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания плодов Мендель обнаружил, что внутри каждого боба встречаются и желтые, и зеленые горошины. Мендель подсчитал общее количество горошин каждого цвета и обнаружил, что желтых горошин примерно в 3 раза больше, чем зеленых.

Таким образом, опыты с изучением морфологии семян (окраски их семядолей, формы поверхности семян) позволяют получить результаты уже на второй год.
Скрещивая растения, различающиеся и по другим признакам, Мендель во всех без исключения опытах получил аналогичные результаты: всегда в первом гибридном поколении проявлялся признак только одного из родительских сортов, а во втором поколении наблюдалось расщепление в соотношении 3:1.

На основании своих экспериментов Мендель ввел понятие доминантного и рецессивного признаков. Доминантные признаки переходят в гибридные растения совершенно неизменными или почти неизменными, а рецессивные становятся при гибридизации скрытыми. Заметим, что к подобным выводам пришли французские естествоиспытатели Сажрэ и Нодэн, которые работали с тыквенными растениями, имеющими раздельнополые цветки. Однако величайшая заслуга Менделя в том, что он впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков.

Для дальнейшего анализа наследственной природы полученных гибридов Мендель проводил скрещивания между сортами, различающимся по двум, трем и более признакам, то есть проводит дигибридное и тригибридное скрещивания. Далее он изучил еще несколько поколений гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных элементарных признаков (доминантных и рецессивных), отмеченное Сажрэ и Нодэном.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличимых от доминантных, но являющихся смешанными (гетерозиготными) по своей природе. Правильность последнего положения Мендель подтвердил, кроме того, путем возвратных скрещиваний гибридов первого поколения с родительскими формами.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками (наследственными факторами) и определяемыми ими признаками организма. Мендель ввел понятие дискретного наследственного задатка, не зависящего в своем проявлении от других задатков. Эти задатки сосредоточены, по мнению Менделя, в зачатковых (яйцевых) и пыльцевых клетках (гаметах). Каждая гамета несет по одному задатку. Во время оплодотворения гаметы сливаются, формируя зиготу; при этом в зависимости от сорта гамет, возникшая из них зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами.

Мендель, родившийся в 1822 г. в Чехии в бедной крестьянской семье, страстно желал быть учителем и ученым. В 1843 г. он стал послушником августинского монастыря (там он получил новое имя Грегор). В монастырском училище он изучал богословие и древневосточные языки, слушал лекции по естествознанию в Брюннском философском институте, увлекался минералогическими и ботаническими коллекциями. Дополнительное обучение Мендель проходил в Венском университете.

Вернувшись из Вены, исследователь приступил к четко спланированному научному эксперименту. Его очень интересовало поистине удивительное проявление наследственности.

Для опытов он выбрал обычный посевной горох. В отличие от предшественников Мендель поставил задачу изучить наследование не целого комплекса, а отдельных, явно различающихся признаков. Это сужало круг вопросов, зато давало возможность получить более четкие результаты. На проведение запланированного эксперимента Мендель затратил десять лет.

Выбор гороха как объекта исследований обусловлен удобством его выращивания, большим разнообразием форм, способностью к самооплодотворению. Пыльца из пыльников попадает на рыльце того же самого цветка до того, как он раскроется, - таким образом одно растение является одновременно и отцовским, и материнским.

При перекрестном оплодотворении пыльцу переносят насекомые или ветер. У гороха, как и у всех самооплодотворяющихся растений, возможно только искусственное перекрестное оплодотворение. В цветках материнских растений удаляют пыльники до того, как из них высыпается пыльца. Затем собирают пыльцу из отцовского растения и переносят ее кисточкой на рыльце материнского. В этом случае горошина - потомство разных растений.

Вся экспериментальная работа Менделя с горохом отличалась высокой тщательностью и последовательностью наблюдений. За два года он проверил чистоту 34 сортов. Для каждого опыта исследователь отбирал два сорта, различающиеся по паре признаков. Всего было исследовано семь признаков. Это окраска семядолей (желтая или зеленая), семенной кожуры (белая или цветная) и незрелых бобов (зеленая или желтая), форма зрелых семян (округлая или угловатая) и зрелых бобов (выпуклая или с глубокими перехватами между семенами), расположение цветков (пазушное или верхушечное), высота стебля (высокий или низкий).

Мендель провел семь скрещиваний между растениями, отличающимися друг от друга по одному признаку. В каждом случае потомство первого поколения напоминало одного из родителей и не имело признака другого родителя. Подавление у гибридных организмов одних признаков другими получило название доминирования. Именно Мендель ввел термин «доминантный» (подавляющий) - для признака, который выявлялся в потомстве, - и «рецессивный» (подавляемый) - для признака, казавшегося исчезнувшим. Так, округлые горошины желтого цвета, зеленая окраска незрелых бобов - доминантные признаки, а морщинистая горошина зеленого цвета, желтая окраска незрелых бобов - рецессивные.

По мнению Менделя, оба признака каким-то образом присутствуют у потомства, но доминантный подавляет рецессивный, и тот находится в скрытом состоянии. Такое предположение может быть подтверждено при анализе растений второго поколения. Мендель высеял гибридные семена от каждого растения отдельно. На этот раз ему не пришлось выполнять трудоемкие скрещивания. В цветках гороха происходило самооплодотворение. В то время как у растений первого поколения семена были только желтые, во втором поколении появлялись растения и с желтыми, и с зелеными. Подобное наблюдалось и при анализе потомств остальных шести типов скрещивания. Во всех случаях была выявлена определенная закономерность появления во втором поколении растений с доминантными и рецессивными признаками.

В результате многочисленных опытов Мендель четко установил, что во втором поколении соотношение растений с доминантными и рецессивными признаками равно 3:1. Три части составляют растения с желтыми семенами и одну - с зелеными. В последующих поколениях у одних растений с желтыми семенами вновь наблюдается расщепление все в том же соотношении, а у других образуются только желтые семена. Растения с рецессивным признаком - зеленые, морщинистые семена, желтая окраска незрелых бобов - не расщепляются в последующих поколениях, все потомство оказывается однородным.

Мендель не только продолжал изучать поведение признака в течение семи поколений, но и многократно повторял опыты. Во всех случаях результаты были одинаковыми. На основании этого ученый сформулировал основные закономерности наследования признаков. Это прежде всего правило единообразия гибридов первого поколения, или закон доминирования, и правило (закон) расщепления во втором поколении.

Наследование признаков по схеме 3:1 названо расщеплением по фенотипу, т. е. по внешнему виду, по видимым признакам. У растений гороха во втором поколении наблюдаются три четверти «смешанных» желтых семян и четверть «чистых» зеленых. «Чистые» желтые семена не пропали вовсе, а входят в число трех четвертей растений с такими признаками. Поставив в равноправное положение семена желтого цвета и гладкой формы с зелеными, морщинистыми, мы преобразуем соотношение потомств второго поколения 3:1 в более правильное 1:2:1, названное расщеплением по генотипу. Под генотипом подразумевают наследственную основу, комплекс наследственных единиц-генов, обусловливающих развитие всех признаков организма. Новое соотношение растений с разными признаками показывает, что половину потомства второго поколения составляют гибриды, которые в дальнейшем расщепляются, а другая половина состоит из нерасщепляющихся (чистых) растений - четверть с доминантными признаками и четверть с рецессивными.

Одна из важнейших особенностей работы Менделя - перевод биологических законов на математический язык. Для математического анализа передачи признаков по наследству он предложил буквенную символику при обозначении наследственных факторов. Доминантный признак - желтый цвет, гладкая форма семян и другие - обозначаются А, а рецессивный - а. Таким образом, группа растений с «чисто» желтым цветом семян выражается формулой АА, «чисто» зеленым - аа и смешанная - Аа. Соотношение разных типов растений во втором поколении по окраске семян записывается в виде АА:2Аа:аа. Константные формы АА и аа названы гомозиготными (одинаковыми), а расщепляющиеся Аа-гетерозиготными (разными, гибридными).

До сих пор речь шла о наследовании признака у потомств, родители которых различались по одному какому-либо признаку (окраске или форме семян, окраске бобов и т. д.). Но каждый из родителей имеет весь набор исследуемых признаков, поэтому важно знать, какие из них проявляются в потомстве. На следующем этапе работы Мендель использовал родителей, отличающихся друг от друга по двум признакам - окраске и форме семян. Поскольку желтый цвет и гладкая форма семян - доминантные признаки, а зеленый цвет и морщинистая форма семян - рецессивные, в первом поколении все семена будут желтые и гладкие.

После самоопыления во втором поколении у растений гороха наблюдаются все четыре возможные комбинации признаков. Обе пары признаков расщепляются совершенно независимо друг от друга, давая общее расщепление 9:3:3:1. На каждые 16 семян в среднем должно приходиться девять желтых гладких, три желтых морщинистых, три зеленых гладких и одно зеленое морщинистое. Если обозначить признак окраски семян буквами А и а, а форму семян - В и в, потомство первого поколения гибрида будет иметь формулу АаВв.

Скрещивание родителей, различающихся по двум парам признаков, названо ди-, по трем - три-, по многим признакам - полигибридным. Анализ потомств от скрещивания растений гороха, отличающихся более чем по одной паре признаков, позволил Менделю сформулировать третий закон - закон независимого комбинирования (различные признаки наследуются независимо друг от друга).

Установленные ученым законы наследственности имеют общебиологическое значение. Они были подтверждены многочисленными исследованиями на различных видах растений и животных. В отличие от существовавших ранее представлений о слитности родительских признаков в потомстве или о мозаичности их наследования - одни признаки приобретаются от матери, другие от отца - Мендель показал дискретный характер наследственности. В самом деле, если бы при скрещивании наследственные признаки родителей не сохранялись в потомстве, а «растворялись» или «смешивались», то невозможен был бы естественный отбор.

Мендель не только сформулировал законы наследственности, но и правильно объяснил их при тогдашнем уровне науки. Установив, что наследуется не вся совокупность свойств, а отдельные признаки, он связал их с отдельными «наследственными задатками», или «факторами», находящимися в половых клетках. Предшественники исследователя открыли пол у растений и показали, что образование гибридных организмов происходит при слиянии мужских и женских половых клеток.

Если предположить, что каждый из родителей передает потомкам по одному фактору каждого сорта, то каждый из них будет иметь два фактора - один от отца, другой от матери, в следующем поколении - четыре и т. д. И через какое-то время у растений будет множество факторов, определяющих каждый признак (окраску и форму семян, бобов и т.д.). Поняв абсурдность такого предположения, Мендель приходит к выводу, что у каждого из родителей есть по два фактора каждого сорта и в зародыш попадает по одному из них. Так, желтоокрашенные семена гороха имеют факторы АА, а зеленоокрашенные - аа. Если родители отличались такими окрасками, то формула гибридов будет иметь вид Аа.

При размножении подобных гибридов у них образуются два типа половых гамет: одни будут иметь фактор А, другие - а. В зависимости от того, в каких сочетаниях будут объединяться эти типы гамет, в ходе оплодотворения могут образовываться гибридные (Аа) и родительские (АА и аа) растения. Объединение гамет обоих типов не приводит к их слиянию или смешению в гибридном организме. Гены А и а остаются у гибридов такими же индивидуальными, какими они были у родительских форм. Это было названо чистотой гамет для каждой пары генов.

В работе Менделя наследственные факторы не связывались с какими-либо конкретными материальными структурами клетки и процессами клеточного деления. Дальнейшие исследования, связанные с выяснением роли хромосом в наследственности, полностью подтвердили правильность выдвинутой гипотезы чистоты гамет. Таким образом, задолго до разработки хромосомной теории наследственности было предсказано существование отдельных материальных задатков (генов) и равное распределение наследственного материала при образовании половых клеток. Принципы чистоты гамет легли в основу современной генетики и способствовали укреплению позиций дарвиновского эволюционного учения.

Закономерности наследования признаков

Кто был первооткрывателем закономерностей наследования признаков?

На каких растениях проводил опыты Г. Мендель?

Благодаря каким приемам Г. Менделю удалось вскрыть законы наследования признаков?

Честь открытия количественных закономерностей наследования признаков при. надлежит чешскому ботанику-любителю Грегору Менделю.

Г. Мендель проводил свои опыты на горохе, так как это растение легко поддается разведению и имеет короткий период развития. Он наблюдал за наследованием только одного или нескольких признаков, по которым проводил свои исследования, что значительно упрощало задачу.

Ученый работал с растениями, относящимися к чистой линии, в ряду поколений которых при самоопылении не наблюдалось расщепления по данному признаку.

Г. Мендель изучал Наследование альтернативных т. е. взаимоисключающих, признаков.

Он использовал в своих исследованиях точные математические методы.

Что такое гибридизация?

Какое скрещивание называют моногибридным? дигибридным?

Скрещивание двух организмов называют гибридизацией.

Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных

(взаимоисключающих) признаков. Дигибридным называется скрещивание, при котором рассматривается наследование и производится точный количественный учет потомства по двум парам альтернативных признаков, а точнее, по взаимоисключающим вариантам этих признаков.

Сформулируйте первый закон Менделя.

Первый закон Менделя - закон единообразия первого поколения (закон доминирования)

При скрещивании двух организмов, относящихся к разным чистым линиям (т. е. двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков, все первое поколение гибридов Г окажется единообразным и будет нести признак одного из родителей.

Этот признак получил название доминантного.

Что такое неполное доминирование? Приведите примеры.

В гетерозиготном организме доминантный ген не всегда подавляет проявление регрессивного гена. В ряде случаев гибрид первого поколения F 1 не воспроизводит полностью ни одного из вариантов родительских признаков, и выраженность признака носит промежуточный характер. Так, при скрещивании ночной красавицы с красной окраской цветов с растениями, имеющими белые цветки, все потомки F1 обладают розовой окраской венчика.

Сформулируйте второй закон Менделя.

Второй закон Менделя - закон расщепления

При скрещивании двух потомков первого поколения F 1между собой (двух гетерозиготных организмов) во втором поколении F2 будет наблюдаться расщепление по фенотипу 3: 1, по генотипу 1:2:1.

То есть по фенотипу три четверти потомства будет нести доминантный признак, а одна четверть потомства окажется рецессивной. По генотипу 25% потомства будет гомозиготным по доминантному гену, 50% гетерозиготным, а 25"/о гомозиготным по рецессивному гену.

Гомозиготный организм – организм, у которого в одних и тех же локусах гомологичных хромосом лежат одинаковые последовательности нуклеотидов аллельные гены. В формальной генетике можно считать организм гомозиготным, если оба аллеля обеспечивают одинаковое проявление признака (например, желтый и желтый). Гетерозиготный организм - организм, у которого в одних и тех же локусах гомологичных хромосом лежат разные по последовательности нуклеотидов аллельные гены, т. е. гены, определяющие различные проявления признака (например, желтый и зеленый).

Что такое «чистота гамет»?

На каком явлении основан закон чистоты гамет?

Наследственные факторы при образовании гибридов не смешиваются, я сохраняются в неизменном виде. Половые клетки содержат только один наследственный фактор из аллельной пары.

Закон чистоты гамет

Гаметы генетически чисты, так как в них находится только один ген из каждой аллельной пары.

Обоснуйте основные положения третьего закона Менделя.

Третий закон Менделя - закон независимого комбинирования признаков

При скрещивании двух гомозиготных организмов, отличающихся друг от друга по двум или более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Закон независимого комбинирования справедлив для аллельных нар, расположенных и разных гомологичных хромосомах. При дигибридном скрещивании во втором поколении гибридов будет наблюдаться расщепление по фенотипу в соотношении 9: 3: З: 1, т. е. 9/16 потомства будет нести оба доминантных признака, 3/16 потомства - один доминантный, а второй рецессивный, 3/16 потомства будет рецессивным по первому и доминантным по второму признакам и 1/16 должна оказаться рецессивной по обоим признакам. Расщепление же по каждому признаку отдельно составит 8: 1, как при моногибридном скрещивании.

Что такое сцепление генов?

Явление совместного наследования генов, локализованных в одной хромосоме, называется сцепленным наследованием, а локализация генов в одной хромосоме сцеплением генов.

Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Явление, при котором гены, расположенные в одной хромосоме, всегда наследуются совместно, называют полным сцеплением. Это возможно, если гены расположены s одной хромосоме непосредственно друг за другом и кроссинговер между ними практически невероятен. Если гены расположены в хромосоме на некотором расстоянии друг от друга, то вероятность кроссинговера между ними повышается. В результате кроссинговера сцепление может нарушаться, и возникают гаметы с перекомбинированными генами. Такое сцепление генов называется неполным.

Что собой представляет группа сцепления? Какие хромосомы включают в одну группу сцепления?

Все гены входящие в одну хромосому, передаются по наследству совместно и составляют группу сцепления.

Поскольку гомологичные хромосомы несут аллельные гены, отвечающие за развитие одних и тех же признаков, в группу сцепления включают обе гомологичные хромосомы. Таким образом, количество групп сцепления соответствует числу хромосом в гаплоидном наборе. Например, у человека 2п = 4б хромосом 23 группы сцепления, у дрозофилы 2п =8 хромосом - 4 группы сцепления.

Какие процессы могут нарушать сцепление генов?

Причиной нарушения сцепления генов служит кроссинговер - перекрест хромосом в профазе 1 мейотического деления.

Чем дальше друг от друга гены расположены в хромосоме, тем выше вероятность перекреста между ними и тем больше процент гамет с перекомбинированными генами, а следовательно, и больше особей в потомстве, отличных от родителей. За единицу расстояния между генами в одной хромосоме принят 1% кроссинговера, названный одной морганидой.

Какие хромосомы называют половыми?

Какой пол называют гомогаметным и какой - гетерогаметным? Приведите примеры.

Хромосомы, которыми мужской и женской пол отличаются друг от друга, называют половыми. или гетерохромосомами. Половые ХРОМОСОМЫ у женщин Одинаковые, их называют Х-хромосомами. У мужчин имеется одна Х- и одна У-хромосома.

Определение пола будущего организма происходит в момент оплодотворения и определяется сочетанием половых хромосом в зиготе. У человека гомогаметным является женский пол, т. е. все яйцеклетки несут Х-хромосому. Мужской пол гетерогаметен, т. е. существуют сперматозоиды двух типов - несущие Х-хромосомy и несущие У-хромосому.

Что такое сцепление генов с попом?

Приведите примеры наследовании гена, сцепленного с полом.

Гены, расположенные в половых хромосомах, называют сцепленными с полом.

В половых хромосомах имеются гены, определяющие половую принадлежность организма, а также наследственные факторы.

Почему проявляются в виде признака рецессивные гены, локализованные в Х-хромосоме человека?

В отличие от генов, локализованных в аутосомах при сцеплении с полом, может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит в тех случаях, когда рецессивный ген, сцепленный с Х-хромосомой, попадает в гетерогаметный организм.

Приведите примеры доминантных и рецессивных признаков у человека.

Доминантными признаками у человека являются карий цвет глаз, темный цвет волос, курчавые волосы; а рецессивными светлые прямые волосы, голубые или серые глаза.

Какие из исследованных Г. Менделем признаков гороха наследуются как доминантные?

Доминантными признаками являются:

1) форма семян гороха - гладкая;

2) окраска семян - желтая;

3) положение цветков - пазушные цветки;

4) окраска цветков - красная;

5) длина стебля - длинные стебли;

6) форма стручки - простые бобы;

7) окраска стручка - зеленая.

Приведите примеры влияния генов на проявление других, аллельных генов.

Как взаимодействуют между собой различные варианты генов, входящие в серию множественных аллелей?

Различают несколько форм взаимодействия аллельных генов. Во-первых, полное доминирование - явление, которое Заключается В том, что ОДИН аллельный ген полностью подавляет другой и проявляется в виде признака. Например, у гороха ген, обусловливающий желтую окраску семян (А), подавляет ген, определяющий зеленую окраску семян (а). Поэтому у гетерозигот (Аа) семеня окрашены в желтый цвет.

Во-вторых, неполное доминирование, выражающееся в том, что ни один из аллельных генов полностью не подавляет другой аллель. У ночной красавицы ген А отвечает за развитие красной окраски венчика цветка (АА), ген а - белой окраски (аа). Гетерозиготные растения (Аа) обладают розовыми цветками.

Третья форма взаимодействия аллельных генов - кодоминирование - совместное проявление обоих аллелей, которые не оказывают влияние друг па друга. Например, при определении групп крови у человека (система АВО) ген I^ обусловливает развитие II (А) группы, а ген Iв образует антиген (агглютиноген) В. расположенный на эритроцитах у лиц с III (В) группой крови.

Наконец, сверхдоминирование - явление, лежащее в основе гетерозиса (эффекта гибридной силы). Гетерозиготы, генотип которых содержит два разных аллеля (Аа), проявляют повышенную жизнеспособность и плодовитость, несравнимую с гомозиготными организмами (АА и аа).

Охарактеризуйте формы взаимодействия неаллельных генов.

Комплементарности - явление взаимодополнения генов из разных аллельных дар. Так, в образовании красной Окраски цветков душистого горошка участвуют два гена: доминантный ген из одной аллельной пары (А) обусловливает синтез бесцветного предшественника красного пигмента -- пропигмента; в другой аллельной паре доминантный ген (В) определяет синтез фермента, превращающего пропигмент в пигмент. Следовательно, цветки душистого горошка окажутся окрашенными только в том случае, если в генотипе будут находиться доминантные гены из двух аллельных пар - А_В_. Во всех остальных случаях венчики цветков останутся неокрашенными - белыми.

(Теги: генов, закон, называют, хромосоме, друга, сцепления, хромосом, человека, скрещивании, признака, организм, хромосомы, Приведите, например, примеры, между, сцепление, подавляет, Какие, цветков, семян, окраска, отличающихся, форма, поколения, наследуются, разных, окраски, расщепление, группы, генами, гомологичных, первого, кроссинговера, аллельные, взаимоисключающих, Наследование, полом, второй, расположены, локализованных, рецессивный, группу, полностью, гомозиготным, половых, взаимодействия, называется, нести, хромосомах, другой, парам, организма, нуклеотидов, аллелей, расположенные, аллеля, следовательно, несут, определяющие, включают, перекомбинированными, доминантных, признаками, обладают, обусловливает, больше, горошка, являются, происходит, красавицы, групп, Доминантными, Половые, несущие, синтез, окажется, неполное, волосы, генотипе, мужской, генотипу, Какой, гомогаметным, локусах, независимого, доминантные, гомологичные, дигибридным, всегда, наблюдаться, окраску, факторы, сцеплением, Менделю, половыми, крови, случаях, душистого, рассматривается)

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

24. Генетика – наука о закономерностях наследственности и изменчивости. Г. Мендель – основоположник генетики

Вспомните!

Что изучает генетика?

Почему основателем генетики считают Г. Менделя?

С какими объектами работал Г. Мендель?

Какой основной метод изучения наследственности он разработал?

Предмет и основные понятия генетики. На протяжении всей истории своего существования человечество всегда интересовал вопрос о причинах сходства детей и родителей. Почему подобное рождает подобное? «Как он похож на своего отца!» – восклицают родственники, придя на день рождения и глядя на выросшего юношу. «У него абсолютный музыкальный слух!» – с гордостью сообщает его мать, обладающая таким же качеством. В голубых глазах родителей светится гордость за подрастающее поколение, а виновник торжества, невинно моргая такими же голубыми глазами, незаметно съедает приготовленные для гостей конфеты.

Мы наследуем от своих родителей не только цвет глаз и волос, форму носа и группу крови. Мы наследуем черты темперамента и особенности движений, склонность к изучению языков и способность к математике. Мы рождаемся на свет, имея свой уникальный наследственный материал, ту программу, на основе которой под влиянием факторов внешней среды мы станем такими, какие мы есть – неповторимые и в то же время похожие на предыдущие поколения.

Наследственность и изменчивость – два свойства живых организмов, неразрывно связанные друг с другом как две стороны одной медали. Закономерности наследственности и изменчивости изучает одна из самых важных областей биологии – генетика.

Наследственность – это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Наследственность обеспечивает материальную и функциональную преемственность между поколениями, сохраняя определённый порядок в природе. Некоторые виды могут оставаться относительно неизменными на протяжении сотен миллионов лет. Например, многие современные акулы мало чем отличаются от акул, живших в раннем меловом периоде более 130 млн лет тому назад.

Клетки организмов не содержат готовых признаков взрослой особи, наследование признаков происходит на молекулярном уровне. Основными структурами, которые обеспечивают материальную основу наследственности, являются хромосомы. Строго говоря, мы наследуем не свойства, а генетическую информацию. Элементарной структурной единицей наследственности является ген – участок ДНК, содержащий информацию о структуре одного белка, тРНК или рРНК. Генотип – это сумма всех генов организма, т. е. совокупность всех наследственных задатков.

Изменчивость – свойство, противоположное наследственности. Оно заключается в способности живых организмов приобретать в процессе индивидуального развития отличия от других особей своего и других видов.

Совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды, называют фенотипом . Мы рождаемся с определённым цветом кожи, но стоит нам летом съездить в более южные края, как наша кожа приобретает смуглый оттенок. С возрастом светлеет радужка глаз и седеют волосы. Перенесённые в детстве болезни могут нарушить рост или развитие каких-то органов. Реализация наследственной информации находится под постоянным давлением факторов окружающей среды. Однако следует отметить, что существуют признаки, проявление которых не зависит от влияния внешней среды. Где бы мы ни жили: на севере или на юге, как бы нас ни кормили в детстве и какими бы болезнями мы ни болели, группа крови, с которой мы родились, останется неизменной на протяжении всей жизни.

У истоков генетики. Основные закономерности наследования признаков впервые были описаны во второй половине XIX в. австрийским учёным Грегором Менделем (1822–1884). Мендель не был первым учёным, который пытался ответить на вопрос: как передаются из поколения в поколение свойства и признаки? Многие исследователи до него скрещивали разнообразные организмы, стараясь увидеть какую-то систему в получаемых результатах. Стремясь добиться успеха как можно быстрее, исследователи скрещивали разные виды, получая при этом бесплодное потомство, брали для изучения сложные, трудно определяемые признаки, не вели точных математических подсчётов.

Объясняя, почему именно Мендель смог обнаружить закономерности в передаче признаков от поколения к поколению, английский генетик Шарлотта Ауэрбах сказала: «Успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для учёного: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы».

Рассмотрим основные особенности работы Менделя, которые позволили ему добиться успеха:

– в качестве экспериментальных растений Мендель использовал разные сорта посевного гороха, поэтому потомство, получаемое в таких внутривидовых скрещиваниях, было плодовито;

– горох – самоопыляющееся растение, т. е. цветок защищён от случайного попадания посторонней пыльцы; при постановке нужного скрещивания Мендель удалял тычинки, чтобы исключить возможность самоопыления, а затем кисточкой переносил на пестик пыльцу другого родительского растения;

– горох неприхотлив и имеет высокую плодовитость;

– в качестве экспериментальных признаков Мендель выбрал простые качественные альтернативные признаки по типу «или-или» (цветки пурпурные или белые, семена жёлтые или зелёные); сейчас трудно сказать, что здесь сыграло основную роль – удача или гениальное предвидение, но оказалось, что каждая пара выбранных Менделем признаков контролировалась одним геном, что значительно упрощало трактовку результатов скрещивания;

– при обработке получаемых данных Мендель вёл строгий математический учёт фенотипов всех растений и семян.

В течение восьми лет Мендель экспериментировал с 22 сортами гороха, которые отличались друг от друга по семи признакам. За это время он изучил в общей сложности более 10 тыс. растений. Скрещивая различные организмы и исследуя получаемое потомство, Мендель, по сути, разработал основной и специфический метод генетики. Гибридологический метод – это система скрещиваний в ряду поколений, дающая возможность при половом размножении анализировать наследование отдельных свойств и признаков организмов, а также обнаруживать возникновение наследственных изменений.

Результаты своих экспериментов Г. Мендель представил в 1865 г. на заседании Общества естествоиспытателей г. Брюнна (современный город Брно) и изложил в статье «Опыты над растительными гибридами». Но современники Менделя работы не оценили, и за оставшиеся 35 лет XIX в. его статью процитировали всего пять раз.

Работа Менделя значительно опередила уровень развития науки того времени. Лишь когда в 1900 г. сразу в трёх лабораториях открыли заново закономерности наследования, учёный мир вспомнил, что 35 лет тому назад они уже были сформулированы. 1900 год считается годом рождения генетики, но закономерности, установленные в своё время Грегором Менделем, справедливо носят его имя.

Вопросы для повторения и задания

1. Дайте определения понятий «наследственность» и «изменчивость».

2. Кто впервые открыл закономерности наследования признаков?

3. На каких растениях проводил опыты Г. Мендель? Докажите, что выбранные учёным растения были оптимальным объектом в данных экспериментах.

4. Благодаря каким особенностям организации работы Г. Менделю удалось открыть законы наследования признаков?

Подумайте! Выполните!

1. До Г. Менделя многие исследователи предпринимали попытки установить закономерности наследования признаков от родителей к детям. Однако все они заканчивались неудачно. Как вы можете это объяснить?

2. Опишите фенотипы известных всем современников (актёров театра и кино, эстрадных артистов, политических деятелей и др.). Предложите одноклассникам по описанию определить человека.

3. Название науки фенологии имеет тот же корень, что и термин «фенотип». Что изучает фенология? Почему эти термины схожи?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Из книги О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь автора Дарвин Чарльз

Причины изменчивости. Когда мы сравниваем особей одной и той же разновидности или под-разновидности наших издревле разводимых растений и животных, нас прежде всего поражает то обстоятельство, что они вообще больше различаются между собой, чем особи любого вида или

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Часть, чрезмерно или исключительным образом развитая у какого-нибудь вида по сравнению с этой же частью у близких видов, обнаруживает наклонность к сильной изменчивости. Несколько лот назад я был очень поражен одним замечанием в этом смысле, сделанным м-ром Уотерхаучом.

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Из книги Род человеческий автора Барнетт Энтони

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Самуэль Ганеман - основоположник гомеопатии В сознании каждого человека гомеопатический метод лечения неразрывно связан с именем его основателя - гениального немецкого врача Самуэля Ганемана, одного из величайших мыслителей в истории медицины. Его имя по праву стоит

Из книги Тропическая природа автора Уоллес Альфред Рассел

Взаимодействие наследственности и среды Иногда спрашивают: что важнее - наследственность или окружающая среда? На этот вопрос не так легко ответить. Если под этим подразумевать, чт? имеет наибольшую силу воздействия, то и тогда следует ограничиться частными случаями.

Из книги Путешествие в страну микробов автора Бетина Владимир

Менделевские законы наследственности Законы передачи наследственных факторов, установленные Менделем на растении, применимы и к человеку. Предположим, что рыжеволосая женщина вышла замуж за брюнета и все их дети будут брюнетами (при условии что мужчина не является

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

Из книги Генетика человека с основами общей генетики [Руководство для самоподготовки] автора

Колибри острова Хуан Фернандес как пример изменчивости и естественного отбора Три вида колибри островов Хуан Фернандес и Мас-а-Фуэра обладают некоторыми в высшей степени замечательными особенностями. Они образуют особый род Eustephanus, один вид которого встречается как в

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

12. Молекулы наследственности и микробы Каждая живая клетка представляет собой микрокосмос, в котором нуклеиновая кислота выступает в качестве диктатора, обычно к нам благоволящего; но в случае рака она становится деспотом-садистом, а в вирусных частицах -

Из книги автора

Что изучает наука генетика? Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими. В зависимости от объекта исследования выделяют генетику растений, генетику животных, генетику микроорганизмов, генетику человека и т. д., а в

Из книги автора

Благодаря какой случайности Грегор Мендель был заслуженно признан основоположником учения о наследственности? В середине XIX века австрийский монах и ботаник-любитель Грегор Мендель (1822–1884) проводил опыты по скрещиванию (посредством искусственного опыления) растений

Из книги автора

27. Хромосомная теория наследственности Вспомните!Что такое хромосомы?Какую функцию они выполняют в клетке и в организме в целом?Какие события происходят в профазе I мейотического деления?В середине XIX в., когда Г. Мендель проводил свои эксперименты и формулировал

Из книги автора

Тема 4. Закономерности наследственности Не беда появиться на свет в утином гнезде, если ты вылупился из лебединого яйца. Г. Х. Андерсен (1805–1875), датский писатель Общебиологическое значение генетики вытекает из того, что законы наследственности справедливы для всех

Загрузка...