krd-lada.ru

Растением с которым мендель проводил опыты. Грегор Мендель — Отец современной генетики

Грегор Мендель, горох и теория вероятностей

Фундаментальная работа Грегора Менделя, посвященная наследованию признаков у растений «Опыты над растительными гибридами», увидела свет в 1865 г., но фактически осталась незамеченной. Его труд был оценен биологами только в начале XX в., когда законы Менделя были переоткрыты. Выводы Менделя не оказали влияния на развитие современной ему науки: эволюционисты не использовали их в построениях своих теорий. Почему же именно Менделя мы считаем основоположником учения о наследственности? Только ли для соблюдения исторической справедливости?

Чтобы разобраться в этом, проследим ход его экспериментов.

Явление наследственности (передачи признаков от родителей потомкам) известно с незапамятных времен. Ни для кого не секрет, что дети похожи на родителей. Знал это и Грегор Мендель. А если дети не похожи на родителей? Ведь известны случаи рождения голубоглазого ребенка от кареглазых родителей! Велик соблазн объяснить это супружеской неверностью, но, например, опыты с искусственным опылением растений показывают, что потомки первого поколения могут быть непохожи ни на одного из родителей. А тут уж точно все честно. Следовательно, признаки потомков не являются просто суммой признаков их родителей. Что же получается? Дети могут быть какими угодно? Тоже нет. Так существует ли вообще какая-нибудь закономерность в наследовании? И можем ли мы предсказать совокупность признаков (фенотип) потомков, зная фенотипы родителей?

Подобные рассуждения и привели Менделя к постановке проблемы исследований. А если поставлена проблема, можно перейти к ее решению. Только как? Каков должен быть метод? Придумать метод – вот с этим Мендель блистательно справился.

Естественное желание ученого при исследовании какого-либо явления – обнаружить закономерность. Мендель решил пронаблюдать интересующее его явление – наследственность – у гороха.

Надо сказать, что горох был выбран Менделем не случайно. Вид Pisum sativum L . очень удобен для изучения наследственности. Во-первых, его легко выращивать и весь жизненный цикл проходит быстро. Во-вторых, он склонен к самоопылению, а без самоопыления, как увидим далее, опыты Менделя были бы невозможны.

Но на что, собственно, нужно обращать внимание при наблюдениях, чтобы выявить закономерность и не заблудиться в хаосе данных?

В первую очередь, признак, наследование которого наблюдается, должен четко различаться визуально. Проще всего взять признак, который проявляется в двух вариантах. Мендель выбрал окраску семядолей. Семядоли у семян гороха могут быть либо зеленые, либо желтые. Такие проявления признака хорошо различимы и четко делят все семена на две группы.

Опыты Менделя: а – желтые и зеленые семена гороха; б – гладкие и морщинистые семена гороха

Кроме того, нужно быть уверенным, что наблюдаемая картина наследования является следствием скрещивания растений с разными проявлениями выбранного признака, а не вызвана какими-то другими обстоятельствами (откуда, строго говоря, он мог знать, что цвет семядолей не зависит, например, от температуры, при которой горох рос?). Как этого добиться?

Мендель вырастил две линии гороха, в одной из которых появлялись только зеленые семена, а в другой – только желтые. Причем на протяжении многих поколений в этих линиях картина наследования не изменялась. В таких случаях (когда в ряде поколений отсутствует изменчивость) говорят, что использована чистая линия.

Растения гороха, на которых ставил опыты Г.Мендель

Всех факторов, влияющих на наследственность, Мендель не знал, поэтому сделал нестандартный логический ход. Он изучил, какие результаты дает скрещивание между собой растений с семядолями одного цвета (в данном случае потомки – точная копия родителей). После этого он провел скрещивание растений с семядолями разных цветов (у одного – зеленые, у другого – желтые), но в тех же условиях. Это дало ему основания утверждать, что различия, которые проявятся в картине наследования, вызваны различными фенотипами родителей при этих двух скрещиваниях, а не каким-либо другим фактором.

Вот какие результаты получил Мендель.

У потомков первого поколения от скрещивания растений с желтыми и зелеными семядолями наблюдалось только одно из двух альтернативных проявлений признака – все семена получились с зелеными семядолями. Такое проявление признака, когда наблюдается преимущественно один из вариантов, Мендель назвал доминантным (альтернативное проявление, соответственно, рецессивным), а результат этот получил название закона единообразия гибридов первого поколения , или первого закона Менделя .

Во втором поколении, полученном с помощью самоопыления, появились семена как с зелеными, так и с желтыми семядолями, причем в соотношении 3:1.
Это соотношение носит название закона расщепления , или второго закона Менделя .
Но эксперимент не кончается получением результатов. Существует еще такой важный этап, как их интерпретация, т. е. осмысление полученных результатов с точки зрения уже накопленных знаний.

Что же знал о механизмах наследования Мендель? Да ничего. Во времена Менделя (середина XIX в.) еще не знали никаких генов и хромосом. Даже идея о клеточном строении всего живого не была еще общепризнанной. Например, многие ученые (в том числе и Дарвин) считали, что наследуемые проявления признаков составляют непрерывный ряд. Это значит, например, что при скрещивании красного мака с желтым потомство должно быть оранжевым.

Мендель в принципе не мог знать биологической природы наследования. Что же дали его опыты? На качественном уровне получается, что потомки действительно бывают какие угодно и никакой закономерности нет. А на количественном? И о чем в данном случае может вообще говорить количественная оценка результатов опыта?

К счастью для науки, Грегор Мендель был не просто любознательным чешским монахом. В юности его очень интересовала физика, он получил хорошее физическое образование. Мендель изучал также и математику, в том числе и начала теории вероятностей, разработанной Блезом Паскалем в середине XVII в. (При чем тут теория вероятностей станет ясно ниже.)

Мемориальная бронзовая доска, посвященная Г.Менделю, открытая в г. Брно в 1910 г.

Как же интерпретировал свои результаты Мендель? Он вполне логично предположил, что существует некая реальная субстанция (он назвал ее наследственным фактором), определяющая цвет семядолей. Допустим, наличие наследственного фактора А определяет зеленый цвет семядолей, а наличие наследственного фактора а – желтый. Тогда, естественно, растения с зелеными семядолями содержат и передают по наследству фактор А , а с желтыми – фактор а . Но почему же тогда среди потомков растений с зелеными семядолями встречаются растения с желтыми семядолями?
Мендель предположил, что каждое растение несет по паре наследственных факторов, отвечающих за данный признак. Причем при наличии фактора А фактор а уже не проявляется (зеленая окраска доминирует над желтой).
Надо сказать, что после замечательных работ Карла Линнея европейские ученые достаточно хорошо представляли процесс полового размножения у растений. В частности, было понятно, что в дочерний организм переходит что-то от матери, а что-то от отца. Не понятно было только, что и как.
Мендель предположил, что при размножении наследственные факторы материнского и отцовского организмов комбинируются между собой как попало, но таким образом, что в дочерний организм попадает один фактор от отца, а другой от матери. Это, прямо скажем, довольно смелое предположение, и любой скептически настроенный ученый (а ученый обязан быть скептиком), поинтересуется почему, собственно, Мендель построил на этом свою теорию.
Здесь и выходит на авансцену теория вероятностей. Если наследственные факторы комбинируются между собой как попало, т.е. независимо, то одинакова вероятность попадания в дочерний организм каждого фактора от матери или от отца?
Соответственно, по теореме умножения, вероятность формирования в дочернем организме конкретной комбинации факторов равна: 1/2 х1/2 = 1/4.
Очевидно, возможны комбинации АА , Аа , аА , аа . С какой же частотой они проявляются? Это зависит от того, в каком соотношении факторы А и а представлены у родителей. Рассмотрим с этих позиций ход опыта.
Сначала Мендель взял две линии гороха. В одной из них желтые семядоли не появлялись ни при каких обстоятельствах. Значит фактор а в ней отсутствовал, и все растения несли комбинацию АА (в случаях, когда организм несет два одинаковых аллеля, он называется гомозиготным ). Точно так же все растения второй линии несли комбинацию аа .
Что же происходит при скрещивании? От одного из родителей с вероятностью 1 приходит фактор А , а от другого с вероятностью 1 – фактор а . Далее они с вероятностью 1х1=1 дают комбинацию Аа (организм, несущий разные аллели одного гена, называется гетерозиготным ). Это отлично объясняет закон единообразия гибридов первого поколения. Все они имеют зеленые семядоли.
При самоопылении от каждого из родителей первого поколения с вероятностью 1/2 (предположительно) приходит либо фактор А , либо фактор а . Это означает, что все комбинации будут равновероятны. Какова же должна быть в данном случае доля потомков с желтыми семядолями? Очевидно, одна четверть. Но это и есть результат опыта Менделя: расщепление по фенотипу 3:1! Следовательно, предположение о равновероятных исходах при самоопылении было верным!
Теория, предложенная Менделем для объяснения явлений наследственности, базируется на строгих математических выкладках и носит фундаментальный характер. Можно даже сказать, что по степени строгости законы Менделя больше похожи на законы математики, чем биологии. Долгое время (да и до сих пор) развитие генетики состояло в проверке приложимости этих законов к тому или иному конкретному случаю.

Задачи

1. У тыквы белая окраска плодов доминирует над желтой.

А. Родительские растения гомозиготны и имели белые и желтые плоды. Какие плоды получатся от скрещивания гибрида первого поколения с его белым родителем? А с желтым родителем?
Б. При скрещивании белой тыквы с желтой получено потомство, половина которого имеет белые плоды, а половина – желтые. Каковы генотипы родителей?
В. Можно ли получить желтые плоды при скрещивании белой тыквы и ее белого потомка из предыдущего вопроса?
Г. Скрещивание белой и желтой тыкв дало только белые плоды. Какое потомство дадут две такие белые тыквы при скрещивании между собой?

2. Черные самки двух разных групп мышей были скрещены с коричневыми самцами. От первой группы было получено 50% черных и 50% коричневых мышат. От второй группы получено 100% черных мышат. Объясните результаты опытов.

3. . Мистер Браун купил у мистера Смита черного быка для своего черного стада. Увы, среди 22 родившихся телят 5 оказались рыжими. Мистер Браун предъявил претензии мистеру Смиту. «Да, мой бык подкачал, – сказал мистер Смит, – но он виноват только наполовину. Половину вины несут Ваши коровы». «Вздор!, – возмутился мистер Браун, – мои коровы ни при чем!» Кто прав в этом споре?

Здесь речь идет о работе Линнея «Sexum Plantarum» («Пол у растений»), посвященной половому размножению растений. Эта работа, изданная в 1760 г., описывала процесс размножения настолько подробно, что долгое время была запрещена в Петербургском университете как безнравственная.

Ботаника. Цикл статей “Удивительные опыты с растениями”

Газета “Биология”, №3, 2000 г.

41. Опыт с зеленой горошиной

Этот опыт впервые был поставлен крупнейшим исследователем проблемы раздражимости растений индийским ученым Д.Ч. Босом. Он показывает, что резкое повышение температуры вызывает в семенах появление токов действия. Для опыта нужны несколько зеленых (несозревших) семян гороха посевного (бобов, фасоли), гальванометр, препаровальная игла, спиртовка.

Соедините внешнюю и внутреннюю части зеленой горошины с гальванометром. Очень осторожно в бюксе нагрейте горошину (не повреждая) приблизительно до 60 °С.

При повышении температуры клеток гальванометр регистрирует разность потенциалов до 0,1–2 В. Вот что отметил по поводу этих результатов сам Д. Ч. Бос: если собрать 500 пар половинок горошин в определенном порядке в серии, то суммарное электрическое напряжение составит 500 В.

Самыми чувствительными у растений являются клетки точек роста, находящиеся на верхушках побегов и корней. Многочисленные, обильно ветвящиеся побеги и быстро нарастающие в длину кончики корней как бы ощупывают пространство и передают информацию о нем в глубь растения. Доказано, что растения воспринимают прикосновение к листу, реагируя на него изменением биопотенциалов, перемещением электрических импульсов, изменением скорости и направления передвижения гормонов. Например, кончик корня реагирует более чем на 50 механических, физических, биологических факторов и всякий раз при этом выбирает наиболее оптимальную программу для роста.

Убедиться в том, что растение реагирует на прикосновения, особенно частые, надоедливые, можно на следующем опыте.

42. Стоит ли трогать растения без надобности

Познакомьтесь с тигмонастиями – двигательными реакциями растений, вызванными прикосновениями.

Для опыта в 2 горшка высадите по одному растению, желательно без опушения на листьях (бобы, фасоль). После появления 1–2 листьев начинайте воздействие: листья одного растения слегка трите между большим и указательным пальцем 30–40 раз ежедневно в течение 2 недель.

К концу второй недели различия будет видны отчетливо: растение, подвергавшееся механическому раздражению, отстает в росте.

Влияние на рост растений механического воздействия

Результаты опыта свидетельствуют, что длительное воздействие на клетки слабыми раздражителями может привести к торможению процессов жизнедеятельности растений.

Постоянным воздействиям подвергаются растения, высаженные вдоль дорог. Особенно чувствительны ели. Их ветви, обращенные к дороге, по которой часто ходят люди, ездят машины, всегда короче ветвей, расположенных на противоположной стороне.

Раздражимость растений, т.е. их способность реагировать на разные воздействия, лежит в основе активных движений, которые у растений не менее разнообразны, чем у животных.

Перед тем как приступить к описанию опытов, раскрывающих механизм движения растений, целесообразно ознакомиться с классификацией этих движений. Если растения на осуществление движений затрачивают энергию дыхания, это физиологически активные движения. По механизму изгиба они подразделяются на ростовые и тургорные.

Ростовые движения обусловлены изменением направления роста органа. Это сравнительно медленные движения, например изгибы стеблей к свету, корней к воде.

Тургорные движения осуществляются путем обратимого поглощения воды, сжатия и растяжения специальных двигательных (моторных) клеток, расположенных у основания органа. Это быстрые движения растений. Они свойственны, например, насекомоядным растениям, листьям мимозы.

Более подробно типы ростовых и тургорных движений будут рассмотрены ниже по мере выполнения опытов.

Для осуществления пассивных (механических) движений прямых затрат энергии клетки не требуется. В механических движениях в большинстве случаев цитоплазма не участвует. Наиболее распространены гигроскопические движения, которые вызываются обезвоживанием и зависят от влажности воздуха.

Гигроскопические движения

В основе гигроскопических движений лежит способность оболочек растительных клеток к поглощению воды и набуханию. При набухании вода поступает в пространство между молекулами клетчатки (целлюлозы) в оболочке и белка в цитоплазме клетки, что приводит к значительному увеличению объема клетки.

43. Движения чешуй шишек хвойных, сухого мха, сухоцветов

Изучите влияние температуры воды на скорость движения семенных чешуй шишек.

Для опыта нужны по 2–4 сухие шишки сосны и ели, высушенные соцветия акроклиниума розового или гелихризума большого (бессмертники), сухой мох кукушкин лен, часы.

Рассмотрите сухую шишку сосны. Семенные чешуи подняты, хорошо видны места, к которым были прикреплены семена.

Опустите половину шишек сосны в холодную воду, а вторую – в теплую (40–50 °С). Наблюдайте за движением чешуй. Отметьте время, которое потребовалось для полного их смыкания.

Достаньте шишки из воды, стряхните и проследите за движением чешуй в процессе высыхания.

Отметьте время, за которое чешуи вернутся в исходное состояние, занесите данные в таблицу.

Объект наблюдения

Температура воды

Продолжительность

10 °С

50 °С

смыкания

размыкания

Шишки ели

Шишки ели

Соцветие бессмертника

Соцветие бессмертника

Повторите опыт с теми же шишками несколько раз. Это позволит не только получить более точные данные, но и убедиться в обратимости изучаемого вида движений.

Результаты опыта позволят сделать важные выводы.

  1. Движение семенных чешуй шишек обусловлено потерей и поглощением ими воды. Об этом же свидетельствует прямая зависимость движения чешуй от температуры воды: при ее повышении скорость движения молекул воды возрастает, набухание чешуй происходит быстрее.
  1. Чтобы набухание чешуй могло изменить их положение в пространстве, строение и химический состав клеток на внешней и внутренней стороне чешуи должны быть различными. Это действительно так. Оболочки клеток верхней стороны чешуй шишек хвойных более эластичны, растяжимы по сравнению с клетками нижней стороны. Поэтому при погружении в воду они поглощают ее больше, быстрее увеличивают свой объем, что приводит к удлинению верхней стороны и движению чешуи вниз. В процессе обезвоживания клетки верхней стороны теряют воду тоже быстрее клеток нижней стороны, что приводит к загибанию чешуи вверх.

Интересно наблюдать вызываемые набуханием движения листьев кукушкина льна либо других листостебельных мхов. У живых растений листья направлены в сторону от стебля, а у сухих – прижаты к нему. Если опустить сухой стебелек в воду, через 1–2 мин листья переходят из вертикального положения в горизонтальное.

Очень красивы движения высушенного соцветия бессмертника. Если сухое соцветие опустить в воду, через 1–2 мин листочки обертки приходят в движение и соцветие закрывается.

Задание. Сравните скорость движения чешуй шишек различных видов хвойных. Зависит ли она от размера шишек? Сравните скорость движения чешуй шишек сосны и ели, листьев мхов и листочков обертки соцветия бессмертника, выявите черты сходства и различия.

44. Гигроскопические движения семян. Гигрометр из семян аистника

Гигроскопические движения играют важную роль в распространении семян различных растений.

Изучите механизм самозакапывания семян аистника, перемещения по почве семян василька полевого.

Для опыта нужны семена аистника (грабельника), василька синего, лист плотной бумаги, часы, предметное стекло.

Аистник – распространенное в Белоруссии растение. Свое название получило благодаря сходству плода с головой аиста.

Рассмотрите внимательно строение сухого плода аистника. Доли зрелого коробочковидного плода снабжены длинной остью, в нижней части спирально закрученной. Плод покрыт жесткими волосками.

На предметное стекло нанесите каплю воды и опустите в нее сухой плод. Закрученная спиралью нижняя часть начинает раскручиваться, и плод, не имеющий опоры на стекле, совершает вращательные движения.

После полного выпрямления ости перенесите плод на сухую часть стекла. По мере высыхания нижняя часть снова закручивается в спираль и вызывает вращение плода.

Проведите хронометраж опыта, сравнивая скорости процессов раскручивания и закручивания спирали.

Механизм движения плода аистника тот же, что и чешуй шишек хвойных, – различие в гигроскопичности клеток ости.

Наблюдения за движением плода в капле воды позволяют понять поведение его в почве. Когда плод падает на землю, верхний конец ости, загнутый под прямым углом, цепляется за окружающие его стебельки и остается неподвижным. При закручивании и раскручивании спирального участка нижняя часть плода с семенем ввинчивается в землю. Путь назад преграждают жесткие, отогнутые вниз волоски, покрывающие плод.

Чтобы изготовить примитивный гигрометр, в кусочке картона или дощечке, покрытой белой бумагой, проделайте отверстие и закрепите в нем нижний конец плода. Для калибровки прибора сначала высушите, затем смочите ость водой и отметьте крайнее положение. Размещать прибор лучше на улице, где колебания влажности выражены более резко, чем в помещении.

Аистник – не единственное растение, способное к самозакапыванию семян. Сходное строение и механизм распространения имеют ковыли, овсюг, лисохвост.

Плоды василька (семянки с хохолком из твердых щетинок) не способны к самозакапыванию. При колебаниях влажности почвы щетинки попеременно опускаются и поднимаются, толкая плод вперед.

Задание. Соберите семена василька, лисохвоста, овсюга. Изучите поведение их во влажной и сухой среде, сравните с аистником.

Тропизмы

Умнейшее создание природы,

Всегда растущее из рода в роды –

В земле корнями, в небе – головой...

В. Рождественский

В зависимости от строения органа и действия факторов внешней среды различают два вида ростовых движений: тропизмы и настии .

Тропизмы (от греч. «тропос» – поворот), тропические движения – это движения органов с радиальной симметрией (корень, стебель) под влиянием факторов внешней среды, которые действуют на растение односторонне. Такими факторами могут быть свет (фототропизм), химические факторы (хемотропизм), действие силы земного тяготения (геотропизм), магнитное поле Земли (магнитотропизм) и др.

Эти движения позволяют растениям располагать листья, корни, цветки в положении, наиболее благоприятном для жизнедеятельности.

45. Гидротропизм корня

Одно из наиболее интересных видов движения – движение корня к воде (гидротропизм). Наземные растения испытывают постоянную потребность в воде, поэтому корень всегда растет в ту сторону, где содержание воды выше. Гидротропизм присущ прежде всего корням высших растений. Наблюдается также у ризоидов мхов и заростков папоротников. Для опыта нужно 10–20 наклюнувшихся семян гороха (люпина, ячменя, ржи), 2 чашки Петри, немного пластилина.

Плотно прикрепленным ко дну пластилиновым барьером разделите площадь чашки на 2 равные части. На барьер положите наклюнувшиеся семена, слегка вдавливая их в пластилин, чтобы при росте корня семена не сдвинулись с места. Корешки должны быть направлены строго вдоль барьера (рис. 24).

Схема расположения семян при изучении гидротропизма корня

Эти этапы работы в контрольной и опытной чашках одинаковы. Теперь предстоит создать различные условия увлажнения. В контрольной чашке влажность в левой и правой частях должна быть одинакова. В опытной чашке вода наливается только в одну половину, а вторая остается сухой.

Обе чашки накройте крышками и поместите в теплое место. Ежедневно наблюдайте за положением корешков. Когда ориентация их станет хорошо заметной, подсчитайте количество семян, корни которых проявили положительный гидротропизм (рост органа в сторону воды).

Наблюдения за движением корешка к воде ясно показывают, что тропизмы – это ростовые движения. Корешок растет в сторону воды, при этом происходит, если это необходимо растению, изгиб корня.

Задание. По описанной выше схеме опыта проверьте способность растений распознавать не только воду, но и нужные растению растворы минеральных солей, например 0,3%-ный раствор нитрата калия или нитрата аммония.

46. Влияние силы земного тяготения на рост стебля и корня

Большинство растений растет вертикально. При этом главную роль играет не расположение их относительно поверхности почвы, а направление радиуса Земли. Именно поэтому на горных склонах растения растут под любым углом к почве, но вверх. Главный стебель обладает отрицательным геотропизмом – он растет в сторону, противоположную действию силы земного тяготения. Главный корень, напротив, обладает положительным геотропизмом.

Наиболее интересно поведение боковых побегов и корней: в отличие от главного корня и стебля они способны расти горизонтально, обладая промежуточным геотропизмом. Побеги и корни второго порядка вообще не воспринимают действие силы земного тяготения и способны расти в любом направлении. Неодинаковое восприятие побегами и корнями различных порядков действия силы земного тяготения позволяет им равномерно распределяться в пространстве.

Чтобы убедиться в противоположной реакции главного стебля и главного корня на одно и то же воздействие силы земного тяготения, можно поставить следующий опыт.

Для опыта нужны наклюнувшиеся семена подсолнечника посевного, пластинки из стекла и пенопласта 10х10 см, фильтровальная бумага, пластилин, стакан.

На пластинку из пенопласта положите несколько слоев увлажненной фильтровальной бумаги. Наклюнувшиеся семена разместите на ней так, чтобы их острые концы были направлены вниз. По углам пластинки прикрепите кусочки пластилина. Положите на них, слегка прижимая, стеклянную пластинку, чтобы зафиксировать семена в нужном положении. Оберните несколькими слоями увлажненной фильтровальной бумаги и в вертикальном положении (острые концы семян должны быть направлены вниз) поместите в теплое место.

Когда корешки достигнут 1–1,5 см, пластинку переверните на 90°, чтобы корешки были расположены горизонтально.

Ежедневно контролируйте состояние проростков. Фильтровальная бумага должна быть влажной.

Проведите хронометраж опыта и отметьте время (в сутках от начала опыта) проявления геотропического изгиба.

Результаты опыта свидетельствуют, что при любом положении проростка в пространстве главный корень всегда изгибается вниз, а стебель – вверх. Причем ответная реакция осевых органов на изменение положения в пространстве может проявиться довольно быстро (1–2 ч).

Геотропическая чувствительность растений высока, некоторые способны воспринимать отклонение от вертикального положения на 1°. Проявление ее зависит от сочетания внешних и внутренних условий. Под влиянием низкой температуры воздуха отрицательный геотропизм стеблей может переходить в поперечный, что приводит к их горизонтальному росту.

Каким же образом стебель или корень «ощущают» свое положение в пространстве? У корня зона, воспринимающая геотропическое раздражение, находится в корневом чехлике. Если его удалить, геотропическая реакция затухает. В стебле силы земного тяготения также воспринимаются верхушкой.

Непосредственный изгиб корня или стебля осуществляется ниже, в зоне, где клетки проходят растяжение. При этом под действием одного и того же фактора – силы земного тяготения – в горизонтально лежащем стебле усиливается рост клеток нижней стороны, что приводит к изгибу его вверх, в корне же – рост клеток верхней стороны и изгиб вниз.

Задание. Изучите характер геотропической реакции стеблей разного порядка двудольного растения. Для этого вырастите проростки, закройте поверхность почвы, чтобы она не высыпалась, и переверните горшки. Наблюдения ведите до тех пор, пока не появятся боковые стебли первого и второго порядка.

47. Влияние этилена на геотропическую реакцию проростков гороха

Рост растений регулируется не только биоэлектрическими сигналами, но и гормональной системой. Главную роль в регуляции скорости роста играет количественное содержание гормона ауксина и его взаимодействие с другими гормонами, в частности абсцизовой кислотой и этиленом.

В отличие от стимулирующего рост ауксина абсцизовая кислота тормозит деление клеток нижней стороны органа. Это вызывает замедление ее роста, и корень начинает изгибаться по направлению к центру Земли.

Для опыта нужны зрелые яблоки (источник этилена), 2 стеклянных колпака, 2 горшка с проростками гороха.

Стеклянные колпаки установите на подставку. Под ними разместите горшки с 2–3-дневными проростками гороха. В опытном варианте под колпак положите яблоки. Растения поставьте в темноту.

По мере накопления этилена в воздухе он начинает проникать в проростки гороха. Через несколько дней становятся заметны нарушения нормальной отрицательной геотропической реакции побегов, которые начинают расти горизонтально, а при высокой концентрации этилена в воздухе даже полегают.

Результаты опыта свидетельствуют о регуляторных функциях этилена в жизни растений. Увеличение его содержания в клетках приводит к изменению скорости их роста.

Задание. Изучите влияние этилена на рост проростков томатов.

Естественно, геотропическая ориентация органов растений в непрерывно меняющихся условиях среды не может всегда оставаться постоянной. По мере формирования и распускания бутонов изменяется ориентация цветоножки, например у мака. Молодые ветки ели растут под более острым углом, чем старые.

Можно изучить смену отрицательного геотропизма цветоножек арахиса (земляного ореха) на положительный, вырастив его в комнатных условиях. После отцветания цветоножка арахиса, на которой сидит завязь, удлиняется, загибается к земле и углубляется в нее. Таким образом, цветки находятся над землей, а плоды созревают в земле. Хотя это ограничивает способность вида к распространению, созревшие семена находятся в идеальных условиях для прорастания.

Вопрос 1. Дайте определения понятий «наследственность» и «изменчивость».
Наследственность - это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Она обеспечивает материальную и функциональную преемственность поколений, является причиной того, что новое поколение похоже на предыдущее. В основе наследования признаков лежит передача потомству генетического материала.
Изменчивость - это способность живых организмов существовать в различных формах, т. е. приобретать в процессе индивидуального развития признаки, отличные от качеств других особей того же вида, в том числе и своих родителей. Изменчивость может определяться особенностями генов особи, их сочетанием и т.п., а может - взаимодействием особи и окружающей среды. В последнем случае даже генетически одинаковые организмы способны приобретать в процессе онтогенеза разные признаки и свойства.

Вопрос 2. Кто впервые открыл закономерности наследования признаков?
Первым человеком, который открыл закономерности наследования признаков, был австрийский ученый Грегор Мендель (1822-1884). Будучи монахом монастыря в Брюнне (Брно, современная Чехия), он в течение восьми лет (1856-1863) скрещивал разные сорта гороха. В 1865 г. Г. Мендель на заседании Общества естествоиспытателей г. Брюнна доложил о результатах своих экспериментов. Работа была оценена по достоинству лишь после 1900 г., когда три ботаника (Гуго де Фриз в Голландии, Карл Корренс в Германии и Эрих Чермак в Австрии) независимо друг от друга заново открыли закономерности наследования.

Вопрос 3. На каких растениях проводил опыты Г Мендель?
Мендель проводил опыты на разных сортах посевного гороха. Для своих экспериментов он использовал 22 сорта гороха, отличающихся по семи признакам. Всего за время исследований он изучил более десяти тысяч растений.

Вопрос 4. Благодаря каким особенностям организации работы Г Менделю удалось открыть законы наследования признаков?
Грегору Менделю удалось открыть законы наследования признаков благодаря следующим особенностям своей работы:
экспериментальным растением являлся горох - неприхотливое растение, обладающее большой плодовитостью и дающее несколько урожаев в год;
горох является самоопыляющимся растением, что позволяет избегать случайного попадания посторонней пыльцы. Мендель во время экспериментов по перекрестному опылению удалял тычинки и кисточкой переносил пыльцу одного родительского растения на пестик другого;
Мендель исследовал качественные, четко различимые признаки, каждый из которых контролировался одним геном;
при обработке данных ученый вел строгий количественный учет всех растений и семян.

Вопрос 1. Дайте определения понятий "наследственность" и "изменчивость".

Наследственность - это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Она обеспечивает материальную и функциональную преемственность поколений, является причиной того, что новое поколение похоже на предыдущее. В основе наследования признаков лежит передача потомству генетического материала.

Изменчивость - это способность живых организмов существовать в различных формах, т. е. приобретать в процессе индивидуального развития признаки, отличные от качеств других особей того же вида, в том числе и своих родителей. Изменчивость может определяться особенностями генов особи, их сочетанием и т. п., а может - взаимодействием особи и окружающей среды. В последнем случае даже генетически одинаковые организмы способны приобретать в процессе онтогенеза разные признаки и свойства.

Вопрос 2. Кто впервые открыл закономерности наследования признаков?

Первым человеком, который открыл закономерности наследования признаков, был австрийский ученый Грегор Мендель (1822-1884). Будучи монахом монастыря в Брюнне (Брно, современная Чехия), он в течение восьми лет (1856-1863) скрещивал разные сорта гороха. В 1865 г. Г. Мендель на заседании Общества естествоиспытателей г. Брюнна доложил о результатах своих экспериментов. Работа была оценена по достоинству лишь после 1900 г., когда три ботаника (Гуго де Фриз в Голландии, Карл Корренс в Германии и Эрих Чермак в Австрии) независимо друг от друга заново открыли закономерности наследования.

Вопрос 3. На каких растениях проводил опыты Г. Мендель?

Мендель проводил опыты на разных сортах посевного гороха. Для своих экспериментов он использовал 22 сорта гороха, отличающихся по семи признакам. Всего за время исследований он изучил более десяти тысяч растений.

Вопрос 4. Благодаря каким особенностям организации работы Г Менделю удалось открыть законы наследования признаков?

Грегору Менделю удалось открыть законы наследования признаков благодаря следующим особенностям своей работы:

    экспериментальным растением являлся горох - неприхотливое растение, обладающее большой плодовитостью и дающее несколько урожаев в год; горох является самоопыляющимся растением, что позволяет избегать случайного попадания посторонней пыльцы. Мендель во время экспериментов по перекрестному опылению удалял тычинки и кисточкой переносил пыльцу одного родительского растения на пестик другого; Мендель исследовал качественные, четко различимые признаки, каждый из которых контролировался одним геном; при обработке данных ученый вел строгий количественный учет всех растений и семян.
Как скачать бесплатное сочинение? . И ссылка на это сочинение; Генетика - наука о закономерностях наследственности и изменчивости. Г. Мендель - основоположник генетики уже в твоих закладках.
Дополнительные сочинения по данной теме

    Вопрос 1. Каких правил придерживался Г. Мендель при проведении своих опытов? Г. Мендель разработал методику проведения опытов над растительными гибридами. Суть этой методики сводилась к следующему. Во-первых, для проведения опытов Г. Мендель удачно выбрал объект исследования - садовый горох, растение самоопыляемое, с коротким периодом созревания, что очень удобно для анализа потомства. Во-вторых, Г. Мендель использовал чистые линии садового гороха, представляющие собой различные сорта, отличающиеся каким-либо признаком и не смешивающиеся в природных условиях. В-третьих,
    Вопрос 1. Какое скрещивание называется дигибридном? Дигибридное скрещивание - это тип скрещивания, при котором прослеживают наследование двух пар альтернативных признаков. Вопрос 2. Сформулируйте закон независимого наследования. Для каких аллельных пар справедлив этот закон? Закон независимого наследования звучит следующим образом: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки передаются потомству независимо друг от друга и комбинируются во всех возможных сочетаниях. Данный закон
    Вопрос 1. Что собой представляют хромосомы? Хромосомы - особые, интенсивно окрашивающиеся структуры ядра, хорошо различимые в микроскоп при делении клетки, являющиеся носителями генетического материала. Каждая хромосома содержит молекулу ДНК, соединенную с особым белком, придающим ей компактность. Участки ДНК, в которых записана информация о первичной структуре белка, называют генами. В каждой хромосоме содержится множество генов. Функция хромосом - точное распределение наследственной информации при делении клетки. Вопрос 2. Почему не всегда соблюдается правило независимого наследования
    Вопрос 1. Какой вклад в биологию внес Ж. Б. Ламарк? Изложите основные положения его эволюционной теории. Ж. Б. Ламарк (1744-1829) создал первую целостную эволюционную теорию. Он определил предпосылки эволюции (наследственность и изменчивость) и указал ее направление (усложнение организации). Перечислим основные положения теории Ж. Б. Ламарка. Первые организмы произошли из неорганической природы путем самозарождения. Их дальнейшее развитие привело к усложнению живых существ. У всех организмов существует стремление к совершенствованию, изначально заложенное в них
    Вопрос 1. Как вы думаете, часто ли в природе встречается дигибридное скрещивание? Если экспериментатор выбирает для последующего анализа две пары признаков и скрещивает между собой организмы, четко различающиеся по этим двум признакам, то он осуществляет дигибридное скрещивание. На самом деле каждый организм - носитель множества разнообразных признаков. В природе никто не отбирает признаки для анализа. И говорить о том, насколько часто в природе происходит дигибридное скрещивание, неправильно. Вопрос 2. Сколько видов гамет
    Тест по биологии для 9 класса «Общие закономерности биологической эволюции» Подготовила: учитель биологии филиала МБОУ Мурзицкой СОШ –Кочетовская ООШ с. Кочетовка Мокеева Светлана Николаевна Тестовые задания по биологии 9 класс «Общие закономерности биологической эволюции» 1. Процесс расхождения признаков организмов, возникающих от общего предка, в ходе приспособления к разным условиям обитания – это … А) Идиоадаптация Б) Конвергенция В) Дивергенция Г) Общая дегенерация 2. Сходство строения у систематически далеких групп – это… А) Идиоадаптация Б) Конвергенция В) Дивергенция Г) Общая дегенерация 3. К общим правилам эволюции
    Применение информационных технологий На уроках биологии. Урок биологии в 9 - ом классе «Закономерности наследственности» Презентация Power Point к уроку Предмет – биология Класс – 9 Тема урока – «Закономерности наследственности» Используемый УМК – государственная программа для общеобразовательных школ, гимназий, лицеев. Дрофа, Москава, 2002 г Учебник – «Общая биология» 9 класс Авторы А. А.Каменский, Е. А. Криксунов, В. В. Пасечник Цели урока: Обучающие: Обобщить и закрепить знания о закономерностях наследственности живых организмов; Сформировать представление о принципах наследования признаков

Закономерности наследования признаков

Кто был первооткрывателем закономерностей наследования признаков?

На каких растениях проводил опыты Г. Мендель?

Благодаря каким приемам Г. Менделю удалось вскрыть законы наследования признаков?

Честь открытия количественных закономерностей наследования признаков при. надлежит чешскому ботанику-любителю Грегору Менделю.

Г. Мендель проводил свои опыты на горохе, так как это растение легко поддается разведению и имеет короткий период развития. Он наблюдал за наследованием только одного или нескольких признаков, по которым проводил свои исследования, что значительно упрощало задачу.

Ученый работал с растениями, относящимися к чистой линии, в ряду поколений которых при самоопылении не наблюдалось расщепления по данному признаку.

Г. Мендель изучал Наследование альтернативных т. е. взаимоисключающих, признаков.

Он использовал в своих исследованиях точные математические методы.

Что такое гибридизация?

Какое скрещивание называют моногибридным? дигибридным?

Скрещивание двух организмов называют гибридизацией.

Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных

(взаимоисключающих) признаков. Дигибридным называется скрещивание, при котором рассматривается наследование и производится точный количественный учет потомства по двум парам альтернативных признаков, а точнее, по взаимоисключающим вариантам этих признаков.

Сформулируйте первый закон Менделя.

Первый закон Менделя - закон единообразия первого поколения (закон доминирования)

При скрещивании двух организмов, относящихся к разным чистым линиям (т. е. двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков, все первое поколение гибридов Г окажется единообразным и будет нести признак одного из родителей.

Этот признак получил название доминантного.

Что такое неполное доминирование? Приведите примеры.

В гетерозиготном организме доминантный ген не всегда подавляет проявление регрессивного гена. В ряде случаев гибрид первого поколения F 1 не воспроизводит полностью ни одного из вариантов родительских признаков, и выраженность признака носит промежуточный характер. Так, при скрещивании ночной красавицы с красной окраской цветов с растениями, имеющими белые цветки, все потомки F1 обладают розовой окраской венчика.

Сформулируйте второй закон Менделя.

Второй закон Менделя - закон расщепления

При скрещивании двух потомков первого поколения F 1между собой (двух гетерозиготных организмов) во втором поколении F2 будет наблюдаться расщепление по фенотипу 3: 1, по генотипу 1:2:1.

То есть по фенотипу три четверти потомства будет нести доминантный признак, а одна четверть потомства окажется рецессивной. По генотипу 25% потомства будет гомозиготным по доминантному гену, 50% гетерозиготным, а 25"/о гомозиготным по рецессивному гену.

Гомозиготный организм – организм, у которого в одних и тех же локусах гомологичных хромосом лежат одинаковые последовательности нуклеотидов аллельные гены. В формальной генетике можно считать организм гомозиготным, если оба аллеля обеспечивают одинаковое проявление признака (например, желтый и желтый). Гетерозиготный организм - организм, у которого в одних и тех же локусах гомологичных хромосом лежат разные по последовательности нуклеотидов аллельные гены, т. е. гены, определяющие различные проявления признака (например, желтый и зеленый).

Что такое «чистота гамет»?

На каком явлении основан закон чистоты гамет?

Наследственные факторы при образовании гибридов не смешиваются, я сохраняются в неизменном виде. Половые клетки содержат только один наследственный фактор из аллельной пары.

Закон чистоты гамет

Гаметы генетически чисты, так как в них находится только один ген из каждой аллельной пары.

Обоснуйте основные положения третьего закона Менделя.

Третий закон Менделя - закон независимого комбинирования признаков

При скрещивании двух гомозиготных организмов, отличающихся друг от друга по двум или более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Закон независимого комбинирования справедлив для аллельных нар, расположенных и разных гомологичных хромосомах. При дигибридном скрещивании во втором поколении гибридов будет наблюдаться расщепление по фенотипу в соотношении 9: 3: З: 1, т. е. 9/16 потомства будет нести оба доминантных признака, 3/16 потомства - один доминантный, а второй рецессивный, 3/16 потомства будет рецессивным по первому и доминантным по второму признакам и 1/16 должна оказаться рецессивной по обоим признакам. Расщепление же по каждому признаку отдельно составит 8: 1, как при моногибридном скрещивании.

Что такое сцепление генов?

Явление совместного наследования генов, локализованных в одной хромосоме, называется сцепленным наследованием, а локализация генов в одной хромосоме сцеплением генов.

Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Явление, при котором гены, расположенные в одной хромосоме, всегда наследуются совместно, называют полным сцеплением. Это возможно, если гены расположены s одной хромосоме непосредственно друг за другом и кроссинговер между ними практически невероятен. Если гены расположены в хромосоме на некотором расстоянии друг от друга, то вероятность кроссинговера между ними повышается. В результате кроссинговера сцепление может нарушаться, и возникают гаметы с перекомбинированными генами. Такое сцепление генов называется неполным.

Что собой представляет группа сцепления? Какие хромосомы включают в одну группу сцепления?

Все гены входящие в одну хромосому, передаются по наследству совместно и составляют группу сцепления.

Поскольку гомологичные хромосомы несут аллельные гены, отвечающие за развитие одних и тех же признаков, в группу сцепления включают обе гомологичные хромосомы. Таким образом, количество групп сцепления соответствует числу хромосом в гаплоидном наборе. Например, у человека 2п = 4б хромосом 23 группы сцепления, у дрозофилы 2п =8 хромосом - 4 группы сцепления.

Какие процессы могут нарушать сцепление генов?

Причиной нарушения сцепления генов служит кроссинговер - перекрест хромосом в профазе 1 мейотического деления.

Чем дальше друг от друга гены расположены в хромосоме, тем выше вероятность перекреста между ними и тем больше процент гамет с перекомбинированными генами, а следовательно, и больше особей в потомстве, отличных от родителей. За единицу расстояния между генами в одной хромосоме принят 1% кроссинговера, названный одной морганидой.

Какие хромосомы называют половыми?

Какой пол называют гомогаметным и какой - гетерогаметным? Приведите примеры.

Хромосомы, которыми мужской и женской пол отличаются друг от друга, называют половыми. или гетерохромосомами. Половые ХРОМОСОМЫ у женщин Одинаковые, их называют Х-хромосомами. У мужчин имеется одна Х- и одна У-хромосома.

Определение пола будущего организма происходит в момент оплодотворения и определяется сочетанием половых хромосом в зиготе. У человека гомогаметным является женский пол, т. е. все яйцеклетки несут Х-хромосому. Мужской пол гетерогаметен, т. е. существуют сперматозоиды двух типов - несущие Х-хромосомy и несущие У-хромосому.

Что такое сцепление генов с попом?

Приведите примеры наследовании гена, сцепленного с полом.

Гены, расположенные в половых хромосомах, называют сцепленными с полом.

В половых хромосомах имеются гены, определяющие половую принадлежность организма, а также наследственные факторы.

Почему проявляются в виде признака рецессивные гены, локализованные в Х-хромосоме человека?

В отличие от генов, локализованных в аутосомах при сцеплении с полом, может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит в тех случаях, когда рецессивный ген, сцепленный с Х-хромосомой, попадает в гетерогаметный организм.

Приведите примеры доминантных и рецессивных признаков у человека.

Доминантными признаками у человека являются карий цвет глаз, темный цвет волос, курчавые волосы; а рецессивными светлые прямые волосы, голубые или серые глаза.

Какие из исследованных Г. Менделем признаков гороха наследуются как доминантные?

Доминантными признаками являются:

1) форма семян гороха - гладкая;

2) окраска семян - желтая;

3) положение цветков - пазушные цветки;

4) окраска цветков - красная;

5) длина стебля - длинные стебли;

6) форма стручки - простые бобы;

7) окраска стручка - зеленая.

Приведите примеры влияния генов на проявление других, аллельных генов.

Как взаимодействуют между собой различные варианты генов, входящие в серию множественных аллелей?

Различают несколько форм взаимодействия аллельных генов. Во-первых, полное доминирование - явление, которое Заключается В том, что ОДИН аллельный ген полностью подавляет другой и проявляется в виде признака. Например, у гороха ген, обусловливающий желтую окраску семян (А), подавляет ген, определяющий зеленую окраску семян (а). Поэтому у гетерозигот (Аа) семеня окрашены в желтый цвет.

Во-вторых, неполное доминирование, выражающееся в том, что ни один из аллельных генов полностью не подавляет другой аллель. У ночной красавицы ген А отвечает за развитие красной окраски венчика цветка (АА), ген а - белой окраски (аа). Гетерозиготные растения (Аа) обладают розовыми цветками.

Третья форма взаимодействия аллельных генов - кодоминирование - совместное проявление обоих аллелей, которые не оказывают влияние друг па друга. Например, при определении групп крови у человека (система АВО) ген I^ обусловливает развитие II (А) группы, а ген Iв образует антиген (агглютиноген) В. расположенный на эритроцитах у лиц с III (В) группой крови.

Наконец, сверхдоминирование - явление, лежащее в основе гетерозиса (эффекта гибридной силы). Гетерозиготы, генотип которых содержит два разных аллеля (Аа), проявляют повышенную жизнеспособность и плодовитость, несравнимую с гомозиготными организмами (АА и аа).

Охарактеризуйте формы взаимодействия неаллельных генов.

Комплементарности - явление взаимодополнения генов из разных аллельных дар. Так, в образовании красной Окраски цветков душистого горошка участвуют два гена: доминантный ген из одной аллельной пары (А) обусловливает синтез бесцветного предшественника красного пигмента -- пропигмента; в другой аллельной паре доминантный ген (В) определяет синтез фермента, превращающего пропигмент в пигмент. Следовательно, цветки душистого горошка окажутся окрашенными только в том случае, если в генотипе будут находиться доминантные гены из двух аллельных пар - А_В_. Во всех остальных случаях венчики цветков останутся неокрашенными - белыми.

(Теги: генов, закон, называют, хромосоме, друга, сцепления, хромосом, человека, скрещивании, признака, организм, хромосомы, Приведите, например, примеры, между, сцепление, подавляет, Какие, цветков, семян, окраска, отличающихся, форма, поколения, наследуются, разных, окраски, расщепление, группы, генами, гомологичных, первого, кроссинговера, аллельные, взаимоисключающих, Наследование, полом, второй, расположены, локализованных, рецессивный, группу, полностью, гомозиготным, половых, взаимодействия, называется, нести, хромосомах, другой, парам, организма, нуклеотидов, аллелей, расположенные, аллеля, следовательно, несут, определяющие, включают, перекомбинированными, доминантных, признаками, обладают, обусловливает, больше, горошка, являются, происходит, красавицы, групп, Доминантными, Половые, несущие, синтез, окажется, неполное, волосы, генотипе, мужской, генотипу, Какой, гомогаметным, локусах, независимого, доминантные, гомологичные, дигибридным, всегда, наблюдаться, окраску, факторы, сцеплением, Менделю, половыми, крови, случаях, душистого, рассматривается)

Загрузка...